Skip to main content

Advertisement

Log in

Preparation of tough and anti-freezing hybrid double-network carboxymethyl chitosan/poly(acrylic amide) hydrogel and its application for flexible strain sensor

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we fabricated a tough, anti-freezing (freezing point of − 25.5 °C) and ionic conductive carboxymethyl chitosan (CMCS)-based double-network (DN) hydrogel by a free radical polymerization and Al3+ coordination. In greater detail, the PAM/CMCS-Al3+ hydrogel was composed of Al3+-coordinated CMCS network and covalently crosslinked PAM network. The hybrid DN structure of PAM/CMCS-Al3+ hydrogel gave rise to high mechanical properties (tensile strength up to 2.15 MPa, elongation at break up to 1741%, toughness of 13.2 MJ/m3 and elastic modulus of 1.43 MPa) and good fatigue resistance. PAM/CMCS-Al3+ hydrogel not only exhibited the capacity to conduct electricity via free ions, but also had good strain sensitivity (GF = 2.09, 0–200% strain and fast response time of 234 ms). Based on the high strain sensitivity, PAM/CMCS-Al3+ hydrogel could be used to assemble a flexible strain sensor with the ability to precisely detect human motions.Kindly check and confirm the edit made in the title.We agree with the edit made in the title.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman J-W, Lee H (2018) Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl Mater Interfaces 10(21):17512–17518. https://doi.org/10.1021/acsami.8b04250

    Article  CAS  Google Scholar 

  2. Liu H-Y, Wang X, Cao Y-X, Yang Y-Y, Yang Y-T, Gao Y-F, Ma Z-S, Wang J-F, Wang W-J, Wu D-C (2020) Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl Mater Interfaces 12(22):25334–25344. https://doi.org/10.1021/acsami.0c06067

    Article  CAS  Google Scholar 

  3. Liu Z-Y, Wang Y, Ren Y-Y, Jin G-Q, Zhang C-C, Chen W, Yan F (2020) Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz 7(3):919–927. https://doi.org/10.1039/C9MH01688K

    Article  CAS  Google Scholar 

  4. Li W-W, Gao F-X, Wang X-Q, Zhang N, Ma M-M (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Ed 55(32):9196–9201. https://doi.org/10.1002/anie.201603417

    Article  CAS  Google Scholar 

  5. Nan J-Y, Zhang G-T, Zhu T-Y, Wang Z-K, Wang L-J, Wang H-S, Chu F-X, Wang C-P, Tang C-B (2020) A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv Sci 7(14):2000587. https://doi.org/10.1002/advs.202000587

    Article  CAS  Google Scholar 

  6. Yang Y-Q, Guan L, Gao G-H (2018) Low-cost, rapidly responsive, controllable, and reversible photochromic hydrogel for display and storage. ACS Appl Mater Interfaces 10(16):13975–13984. https://doi.org/10.1021/acsami.8b00235

    Article  CAS  Google Scholar 

  7. Bai J, Wang R, Ju M, Zhou J, Zhang L, Jiao T (2020) Facile preparation and high performance of wearable strain sensors based on ionically crosslinked composite hydrogels. Sci China Mater 64(4):942–952

    Article  Google Scholar 

  8. Cheng Y, Ren X-Y, Gao G-H, Duan L-J (2019) High strength, anti-freezing and strain sensing carboxymethyl cellulose-based organohydrogel. Carbohyd Polym 223:115051. https://doi.org/10.1016/j.carbpol.2019.115051

    Article  CAS  Google Scholar 

  9. Cui C, Fu Q-J, Meng L, Hao S-W, Dai R-G, Yang J (2020) Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Appl Bio Mater 4(1):85–121. https://doi.org/10.1021/acsabm.0c00807

    Article  CAS  Google Scholar 

  10. Fang L-Y, Zhang J-C, Wang W-J, Zhang Y-L, Chen F, Zhou J-H, Chen F-B, Li R, Zhou X-C, Xie Z (2020) Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl Mater Interfaces 12(50):56393–56402. https://doi.org/10.1021/acsami.0c14472

    Article  CAS  Google Scholar 

  11. Gao Y, Jia F, Gao G-H (2019) Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors. Chem Eng J 375:121915. https://doi.org/10.1016/j.cej.2019.121915

    Article  CAS  Google Scholar 

  12. Mo F-N, Huang Y, Li Q, Wang Z-F, Jiang R-J, Gai W-M, Zhi C-Y (2021) A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv Funct Mater 31(28):2010830. https://doi.org/10.1002/adfm.202010830

    Article  CAS  Google Scholar 

  13. Wang X-H, Song F, Qian D, He Y-D, Ni W-C, Wang X-L, Wang Y-Z (2018) Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chem Eng J 349:588–594. https://doi.org/10.1016/j.cej.2018.05.081

    Article  CAS  Google Scholar 

  14. Xia S, Song S, Li Y, Gao G-H (2019) Highly sensitive and wearable gel-based sensors with a dynamic physically crosslinked structure for strain-stimulus detection over a wide temperature range. J Mater Chem C 7(36):11303–11314. https://doi.org/10.1039/c9tc03475g

    Article  CAS  Google Scholar 

  15. Xia S, Zhang Q, Song S-X, Duan L-J, Gao G-H (2019) Bioinspired dynamic crosslinked hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem Mater 31(22):9522–9531. https://doi.org/10.1021/acs.chemmater.9b03919

    Article  CAS  Google Scholar 

  16. Yu Z-C, Wu P-Y (2021) A highly transparent ionogel with strength enhancement ability for robust bonding in an aquatic environment. Mater Horiz 8(7):2057–2064. https://doi.org/10.1039/d1mh00461a

    Article  CAS  Google Scholar 

  17. Zhang H-T, Wu X-J, Qin Z-H, Sun X, Zhang H, Yu Q-Y, Yao M-M, He S-S, Dong X-R, Yao F, Li J-J (2020) Dual physically crosslinked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors. Cellulose 27(17):9975–9989. https://doi.org/10.1007/s10570-020-03463-5

    Article  CAS  Google Scholar 

  18. Zhang X-J, Wang K, Hu J-Y, Zhang Y-C, Dai Y, Xia F (2020) Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J Mater Chem A 8(47):25390–25401. https://doi.org/10.1039/d0ta09315g

    Article  CAS  Google Scholar 

  19. Zhang Y, Li M-Y, Han X, Fan Z-W, Zhang H-H, Li Q-L (2021) High-strength and highly electrically conductive hydrogels for wearable strain sensor. Chem Phys Lett 769:138437. https://doi.org/10.1016/j.cplett.2021.138437

    Article  CAS  Google Scholar 

  20. Karolina Pierchala M, Kadumudi FB, Mehrali M, Zsurzsan TG, Kempen PJ, Serdeczny MP, Spangenberg J, Andresen TL, Dolatshahi-Pirouz A (2021) Soft electronic materials with combinatorial properties generated via mussel-Inspired chemistry and halloysite nanotube reinforcement. ACS Nano 15(6):9531–9549. https://doi.org/10.1021/acsnano.0c09204

    Article  CAS  Google Scholar 

  21. Wei Y, Xiang L-J, Ou H-J, Li F, Zhang Y-Z, Qian Y-Y, Hao L-J, Diao J-J, Zhang M-L, Zhu P-H, Liu Y-J, Kuang Y-D, Chen G (2020) MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv Funct Mater 30(48):2005135. https://doi.org/10.1002/adfm.202005135

    Article  CAS  Google Scholar 

  22. Hur J, Im K, Kim SW, Kim J, Chung DY, Kim TH, Jo KH, Hahn JH, Bao Z, Hwang S, Park N (2014) Polypyrrole/Agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8(10):10066–10076. https://doi.org/10.1021/nn502704g

    Article  CAS  Google Scholar 

  23. Gong J-P, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158. https://doi.org/10.1002/adma.200304907

    Article  CAS  Google Scholar 

  24. Lei K, Wang K-Q, Sun Y-L, Zheng Z, Wang X-L (2020) Rapid-fabricated and recoverable dual-network hydrogel with inherently anti-bacterial abilities for potential adhesive dressings. Adv Funct Mater 31(6):2008010. https://doi.org/10.1002/adfm.202008010

    Article  CAS  Google Scholar 

  25. Singh N, Lainer B, Formon GJM, DePiccoli S, Hermans TM (2020) Re-programming hydrogel properties using a fuel-driven reaction cycle. JACSociety 142(9):4083–4087

    CAS  Google Scholar 

  26. Lei Z-Y, Wu P-Y (2018) Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano 12(12):12860–12868. https://doi.org/10.1021/acsnano.8b08062

    Article  CAS  Google Scholar 

  27. Li X-F, Yang Q, Zhao Y-J, Long S-J, Zheng J (2017) Dual physically crosslinked double network hydrogels with high toughness and self-healing properties. Soft Matter 13(5):911–920. https://doi.org/10.1039/c6sm02567f

    Article  CAS  Google Scholar 

  28. Huang W, Duan H-D, Zhu L-P, Li G-Q, Ban Q, Lucia LA (2016) A semi-interpenetrating network polyampholyte hydrogel simultaneously demonstrating remarkable toughness and antibacterial properties. New J Chem 40(12):10520–10525. https://doi.org/10.1039/c6nj01833e

    Article  CAS  Google Scholar 

  29. Ding H-Y, Liang X-X, Xu J-Y, Tang Z-Q, Li Z, Liang R, Sun G-X (2021) Hydrolyzed hydrogels with super stretchability, high strength, and fast self-recovery for flexible sensors. ACS Appl Mater Interfaces 13(19):22774–22784. https://doi.org/10.1021/acsami.1c04781

    Article  CAS  Google Scholar 

  30. Wahid F, Wang H-S, Zhong C, Chu L-Q (2017) Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels crosslinked by metal ions complexation. Carbohyd Polym 165:455–461. https://doi.org/10.1016/j.carbpol.2017.02.085

    Article  CAS  Google Scholar 

  31. Yang J, Li M, Wang Y-F, Wu H, Ji N, Dai L, Li Y, Xiong L, Shi R, Sun Q-J (2019) High-strength physically multi-crosslinked chitosan hydrogels and aerogels for removing heavy-metal ions. J Agric Food Chem 67(49):13648–13657. https://doi.org/10.1021/acs.jafc.9b05063

    Article  CAS  Google Scholar 

  32. Liu B-B, Li F-B, Niu P-Y, Li H (2021) Tough adhesion of freezing- and drying-tolerant transparent nanocomposite organohydrogels. ACS Appl Mater Interfaces 13(18):21822–21830. https://doi.org/10.1021/acsami.1c04758

    Article  CAS  Google Scholar 

  33. Chen G-Q, Huang J-R, Gu J-F, Peng S-J, Xiang X-T, Chen K, Yang X, Guan L, Jiang X-C, Hou L-X (2020) Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J Mater Chem A 8(14):6776–6784. https://doi.org/10.1039/d0ta00002g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Fujian Province (No. 2020J01516).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dezhan Ye or Xiancai Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3356 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, J., Zhang, J. et al. Preparation of tough and anti-freezing hybrid double-network carboxymethyl chitosan/poly(acrylic amide) hydrogel and its application for flexible strain sensor. J Mater Sci 57, 19666–19680 (2022). https://doi.org/10.1007/s10853-022-07813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07813-5

Navigation