Skip to main content

Advertisement

Log in

Alkali metal Na+ doped LiNi0.8Co0.1Mn0.1O2 cathode material with a stable structure and high performance for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High nickel ternary materials are the preferred cathode material for electric vehicle power batteries due to the advantage of high energy density. Nevertheless, the electrochemical performance deteriorates due to the unstable structure of the high nickel cathode material. To address this issue, a solid phase sintering process introduces alkali metal Na+ with a larger ion radius into LiNi0.8Co0.1Mn0.1O2 (Na@LNCM). In the crystal structure of Na@LNCM material, Na+ ions occupied the Li+ sites, resulting in the decrease of lithium-nickel mixing in Na@LNCM and maintain the structural stability of the material. Meanwhile, Na+ doping increases the interlayer spacing of Na@LNCM and plays a key role in supporting the structure of the material, which is beneficial to accelerating the transportation of Li+ during charge–discharge cycles. The cycling and rate performances of Na@LNCM are apparently improved by Na+ doping in this study. So, Na+ doped high nickel cathodes can be used in high performance lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292. https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  2. He B, Li G, Li J et al (2021) MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in Lithium-oxygen batteries. Adv Energy Mater 11:1–12. https://doi.org/10.1002/aenm.202003263

    Article  CAS  Google Scholar 

  3. Li J, Han K, Huang J et al (2021) Polarized nucleation and efficient decomposition of Li2O2 for Ti2C MXene cathode catalyst under a mixed surface condition in lithium-oxygen batteries. Energy Storage Mater 35:669–678. https://doi.org/10.1016/j.ensm.2020.12.004

    Article  CAS  Google Scholar 

  4. Liu J, Wang J, Ni Y, Zhang K, Cheng F, Chen J (2021) Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater Today 43:132–165. https://doi.org/10.1016/j.mattod.2020.10.028

    Article  CAS  Google Scholar 

  5. Niu C, Liu D, Lochala JA et al (2021) Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat Energy 6:723–732. https://doi.org/10.1038/s41560-021-00852-3

    Article  CAS  Google Scholar 

  6. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-15355-0

    Article  Google Scholar 

  7. Lai X-w, Hu G-r, Peng Z-d, Cao Y-b, Du K, Liu Y-x (2022) Li1.4Al0.4Ti1.6(PO4)3 coated Li1.2Ni0.13Co0.13Mn0.54O2 for enhancing electrochemical performance of lithium-ion batteries. J Cent South Univ 29:1463. https://doi.org/10.1007/s11771-022-5037-2

    Article  CAS  Google Scholar 

  8. He W, Guo W, Wu H et al (2021) Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 33:1–35. https://doi.org/10.1002/adma.202005937

    Article  CAS  Google Scholar 

  9. Khan I, Baig N, Ali S, Usman M, Khan SA, Saeed K (2021) Progress in layered cathode and anode nanoarchitectures for charge storage devices: challenges and future perspective. Energy Storage Mater 35:443–469. https://doi.org/10.1016/j.ensm.2020.11.033

    Article  Google Scholar 

  10. Fan X, Ou X, Zhao W et al (2021) In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-25611-6

    Article  CAS  Google Scholar 

  11. Wang L, Wang J, Wang L, Zhang M, Wang R, Zhan C (2022) A critical review on nickel-based cathodes in rechargeable batteries. Int J Miner Metall Mater 29:925–941. https://doi.org/10.1007/s12613-022-2446-z

    Article  CAS  Google Scholar 

  12. Su Y, Zhang Q, Chen L et al (2022) Stress accumulation in Ni-rich layered oxide cathodes: origin, impact, and resolution. J Energy Chem 65:236–253. https://doi.org/10.1016/j.jechem.2021.05.048

    Article  CAS  Google Scholar 

  13. Heenan TMM, Wade A, Tan C et al (2020) Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv Energy Mater 10:1–13. https://doi.org/10.1002/aenm.202002655

    Article  CAS  Google Scholar 

  14. Fan X, Hu G, Zhang B et al (2020) Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70:1–11. https://doi.org/10.1016/j.nanoen.2020.104450

    Article  Google Scholar 

  15. Guo L, Tan L, Xu A et al (2022) Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy Storage Materials 50:96–104. https://doi.org/10.1016/j.ensm.2022.05.014

    Article  Google Scholar 

  16. Zheng J-c, Yang Z, He Z-j, Tong H, Yu W-j, Zhang J-f (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621. https://doi.org/10.1016/j.nanoen.2018.09.014

    Article  CAS  Google Scholar 

  17. Ou X, Liu T, Zhong W et al (2022) Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat Commun 13:1–12. https://doi.org/10.1038/s41467-022-30020-4

    Article  CAS  Google Scholar 

  18. Lv Y, Cheng X, Qiang W, Huang B (2020) Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. J Power Sources 450:1–9. https://doi.org/10.1016/j.jpowsour.2020.227718

    Article  CAS  Google Scholar 

  19. Park HG, Min K, Park K (2022) A synergistic effect of Na+ and Al3+ dual doping on electrochemical performance and structural stability of LiNi0.88Co0.08Mn0.04O2 cathodes for Li-ion batteries. ACS Appl Mater Interfaces 14:5168–5176. https://doi.org/10.1021/acsami.1c16042

    Article  CAS  Google Scholar 

  20. Park N-Y, Ryu H-H, Kuo L-Y, Kaghazchi P, Yoon CS, Sun Y-K (2021) High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles. ACS Energy Lett 6:4195–4202. https://doi.org/10.1021/acsenergylett.1c02281

    Article  CAS  Google Scholar 

  21. Cheng Y, Sun Y, Chu C et al (2022) Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res 15:4091–4099. https://doi.org/10.1007/s12274-021-4035-2

    Article  CAS  Google Scholar 

  22. Yao L, Li Y, Gao X et al (2021) Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater 36:179–185. https://doi.org/10.1016/j.ensm.2020.12.026

    Article  Google Scholar 

  23. Kim U-H, Park G-T, Son B-K et al (2020) Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat Energy 5:860 869. https://doi.org/10.1038/s41560-020-00693-6

    Article  CAS  Google Scholar 

  24. Dong S, Zhou Y, Hai C et al (2020) Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials. J Power Sources 462:1–9. https://doi.org/10.1016/j.jpowsour.2020.228185

    Article  Google Scholar 

  25. Kim U-H, Park N-Y, Park G-T, Kim H, Yoon CS, Sun Y-K (2020) High energy W-doped Li [Ni0.95Co0.04Al0.01]O2 cathodes for next generation electric vehicles. Energy Storage Mater 33:399–407. https://doi.org/10.1016/j.ensm.2020.08.013

    Article  Google Scholar 

  26. Sun HH, Kim UH, Park JH et al (2021) Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat Commun 12:1–11. https://doi.org/10.1038/s41467-021-26815-6

    Article  CAS  Google Scholar 

  27. Park G-T, Yoon DR, Kim U-H et al (2021) Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy Environ Sci 14:6616–6626. https://doi.org/10.1039/d1ee02898g

    Article  CAS  Google Scholar 

  28. Ryu HH, Park NY, Yoon DR, Kim UH, Yoon CS, Sun YK (2020) New class of Ni-rich cathode materials Li [NixCoyB1−x−y]O2 for next lithium batteries. Adv Energy Mater 10:1–8. https://doi.org/10.1002/aenm.202000495

    Article  CAS  Google Scholar 

  29. Ryu HH, Park KJ, Yoon DR, Aishova A, Yoon CS, Sun YK (2019) Li [Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability. Adv Energy Mater 9:1–7. https://doi.org/10.1002/aenm.201902698

    Article  CAS  Google Scholar 

  30. Kim U-H, Park G-T, Conlin P et al (2021) Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ Sci 14:1573–1583. https://doi.org/10.1039/d0ee03774e

    Article  CAS  Google Scholar 

  31. Yoon CS, Kim U-H, Park G-T et al (2018) Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. ACS Energy Lett 3:1634–1639. https://doi.org/10.1021/acsenergylett.8b00805

    Article  CAS  Google Scholar 

  32. Mao G, Yu W, Zhou Q et al (2020) Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Appl Surf Sci 531:1–8. https://doi.org/10.1016/j.apsusc.2020.147245

    Article  Google Scholar 

  33. Tong H, Zhou Q, Zhang B et al (2019) A novel core-shell structured nickel-rich layered cathode material for high-energy lithium-ion batteries. Eng Sci 8:25–32. https://doi.org/10.30919/es8d502

    Article  Google Scholar 

  34. Guo YJ, Zhang CH, Xin S et al (2022) Competitive doping chemistry for nickel-rich layered oxide cathode materials. Angew Chem Int Ed Engl 61:1–6. https://doi.org/10.1002/anie.202116865

    Article  CAS  Google Scholar 

  35. Riewald F, Kurzhals P, Bianchini M, Sommer H, Janek J, Gasteiger HA (2022) The LiNiO2 cathode active material: a comprehensive study of calcination conditions and their correlation with physicochemical properties: Part II—morphology. J Electrochem Soc 169:1–14. https://doi.org/10.1149/1945-7111/ac4bf3

    Article  Google Scholar 

  36. Zhang J, He H, Wang X et al (2022) A new modification strategy for improving the electrochemical performance of high-nickel cathode material: V2O5 particles anchored on rGO sheets as a dual coating layer. Appl Surf Sci 589:1–9. https://doi.org/10.1016/j.apsusc.2022.152878

    Article  Google Scholar 

  37. Li Y, Liu J, Lei Y, Lai C, Xu Q (2017) Enhanced electrochemical performances of Na-doped cathode material LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. J Mater Sci 52:13596–13605. https://doi.org/10.1007/s10853-017-1449-z

    Article  CAS  Google Scholar 

  38. Wang L-f, Geng M-m, Ding X-n et al (2021) Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int J Miner Metall Mater 28:538–552. https://doi.org/10.1007/s12613-020-2218-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Innovation Program of Hunan Province (Grant No. 2020SK2007), Natural Science Foundation of Hunan Province (Grant No. 2019JJ50814), the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 1053320211418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, G., Yang, Y., Jiao, W. et al. Alkali metal Na+ doped LiNi0.8Co0.1Mn0.1O2 cathode material with a stable structure and high performance for lithium-ion batteries. J Mater Sci 57, 19892–19901 (2022). https://doi.org/10.1007/s10853-022-07763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07763-y

Navigation