Skip to main content
Log in

Theoretical investigation of high coverage water adsorption on Co and Ni doped γ-Al2O3 surface

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The study on the interaction of water with catalyst surface is significant for the design of efficient catalysts for the reactions with water as reactant. Herein, the DFT-D3 method was employed to explore the adsorption state and mechanism between catalyst surface and high coverage water. The results showed that single H2O molecule was more favorable dissociative adsorbed on the Co and Ni-promoted γ-Al2O3 (110) with adsorption energies of −193 and −259 kJ/mol. For the one O defective surface, the dissociated OH of H2O molecule filled into the O vacancy. The interaction mechanism between H2O molecule with the surface was the lone pair electron of adsorbed H2O overlap with the surface Lewis acid metal 3d orbit. The dissociation mechanism for single H2O molecule was dissociated H migrated to the surface metal sites located between Ow and Os. The surface phase diagram showed that Co and Ni-promoted γ-Al2O3 (110) exhibit five stable adsorption structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alberton AL, Souza MM, Schmal M (2007) Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal Today 123:257–264. https://doi.org/10.1016/j.cattod.2007.01.062

    Article  CAS  Google Scholar 

  2. Comas J, Mariño F, Laborde M, Amadeo N (2004) Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chem Eng J 98:61–68. https://doi.org/10.1016/S1385-8947(03)00186-4

    Article  CAS  Google Scholar 

  3. Dissanayake D, Rosynek MP, Kharas KC, Lunsford JH (1991) Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst. J Catal 132:117–127. https://doi.org/10.1016/0021-9517(91)90252-Y

    Article  CAS  Google Scholar 

  4. Hu D, Gao J, Ping Y et al (2012) Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Ind Eng Chem Res 51:4875–4886. https://doi.org/10.1021/ie300049f

    Article  CAS  Google Scholar 

  5. Zhu X, Huo P, Zhang Y-p, Cheng D-G, Liu C-J (2008) Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl Catal, B-Environ 81:132–140. https://doi.org/10.1016/j.apcatb.2007.11.042

    Article  CAS  Google Scholar 

  6. Yang Z, Lei Z, Ge B et al (2021) Development of catalytic combustion and CO2 capture and conversion technology. Int J Coal Sci Techn 8:377–382. https://doi.org/10.1007/S40789-021-00444-2

    Article  CAS  Google Scholar 

  7. Ye R-P, Liao L, Reina TR et al (2021) Engineering Ni/SiO2 catalysts for enhanced CO2 methanation. Fuel 285:119151. https://doi.org/10.1016/j.fuel.2020.119151

    Article  CAS  Google Scholar 

  8. Gao Y, Ma J, Meng F, Wang W, Li Z (2020) Solution-combusted nanosized Ni–Al2O3 catalyst for slurry CO methanation: effects of alkali/alkaline earth metal chlorides. J Mater Sci 55:16510–16521. https://doi.org/10.1007/s10853-020-05222-0

    Article  CAS  Google Scholar 

  9. Ma W, Jacobs G, Das TK et al (2014) Fischer-Tropsch synthesis: kinetics and water effect on methane formation over 25%Co/γ-Al2O3 catalyst. Ind Eng Chem Res 53:2157–2166. https://doi.org/10.1021/ie402094b

    Article  CAS  Google Scholar 

  10. Jacobs G, Patterson PM, Zhang Y, Das T, Li J, Davis BH (2002) Fischer-Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl Catal, A-Gen 233:215–226. https://doi.org/10.1016/S0926-860X(02)00147-3

    Article  CAS  Google Scholar 

  11. Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Appl Catal, A-Gen 264:203–212. https://doi.org/10.1016/j.apcata.2003.12.049

    Article  CAS  Google Scholar 

  12. Xiong H, Zhang Y, Wang S, Li J (2005) Fischer-Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catal Commun 6:512–516. https://doi.org/10.1016/j.catcom.2005.04.018

    Article  CAS  Google Scholar 

  13. Munnik P, Krans NA, de Jongh PE, de Jong KP (2014) Effects of drying conditions on the synthesis of Co/SiO2 and Co/Al2O3 Fischer-Tropsch catalysts. ACS Catal 4:3219–3226. https://doi.org/10.1021/cs5006772

    Article  CAS  Google Scholar 

  14. Fatah N, Dhainaut F (2019) Analysis of particle breakage during the preparation steps of Co/Al2O3 catalysts. J Mater Sci 54:14275–14286. https://doi.org/10.1007/s10853-019-03918-6

    Article  CAS  Google Scholar 

  15. Yang J, Dettori R, Nunes JPF et al (2021) Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 596:531–535. https://doi.org/10.1038/s41586-021-03793-9

    Article  CAS  Google Scholar 

  16. Wang Y-H, Zheng S, Yang W-M et al (2021) In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600:81–85. https://doi.org/10.1038/s41586-021-04068-z

    Article  CAS  Google Scholar 

  17. Shafiee P, Alavi SM, Rezaei M, Jokar F (2022) Promoted Ni–Co–Al2O3 nanostructured catalysts for CO2 methanation. Int J Hydrogen Energ 47:2399–2411. https://doi.org/10.1016/j.ijhydene.2021.10.197

    Article  CAS  Google Scholar 

  18. Visconti CG, Lietti L, Tronconi E, Forzatti P, Zennaro R, Finocchio E (2009) Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl Catal, A-Gen 355:61–68. https://doi.org/10.1016/j.apcata.2008.11.027

    Article  CAS  Google Scholar 

  19. Cornaro U, Rossini S, Montanari T, Finocchio E, Busca G (2012) K-doping of Co/Al2O3 low temperature Fischer-Tropsch catalysts. Catal Today 197:101–108. https://doi.org/10.1016/j.cattod.2012.07.005

    Article  CAS  Google Scholar 

  20. Kondo JN, Iizuka M, Domen K, Wakabayashi F (1997) IR study of H2O adsorbed on H-ZSM-5. Langmuir 13:747–750. https://doi.org/10.1021/la9607565

    Article  CAS  Google Scholar 

  21. Garbarino G, Finocchio E, Lagazzo A et al (2014) Steam reforming of ethanol–phenol mixture on Ni/Al2O3: effect of magnesium and boron on catalytic activity in the presence and absence of sulphur. Appl Catal, B-Environ 147:813–826. https://doi.org/10.1016/j.apcatb.2013.09.030

    Article  CAS  Google Scholar 

  22. Choong CK, Huang L, Zhong Z, Lin J, Hong L, Chen L (2011) Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: II. Acidity/basicity, water adsorption and catalytic activity. Appl Catal, A-Gen 407:155–162. https://doi.org/10.1016/j.apcata.2011.08.038

    Article  CAS  Google Scholar 

  23. Park S-J, Bae JW, Jung G-I et al (2012) Crucial factors for catalyst aggregation and deactivation on Co/Al2O3 in a slurry-phase Fischer-Tropsch synthesis. Appl Catal, A-Gen 413:310–321. https://doi.org/10.1016/j.apcata.2011.11.022

    Article  CAS  Google Scholar 

  24. Digne M (2004) Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces. J Catal 226:54–68. https://doi.org/10.1016/j.jcat.2004.04.020

    Article  CAS  Google Scholar 

  25. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2002) Hydroxyl groups on γ-alumina surfaces: a DFT study. J Catal 211:1–5. https://doi.org/10.1006/jcat.2002.3741

    Article  CAS  Google Scholar 

  26. Shi L, Meng S, Jungsuttiwong S et al (2020) High coverage H2O adsorption on CuAl2O4 surface: a DFT study. Appl Surf Sci 507:145162. https://doi.org/10.1016/j.apsusc.2019.145162

    Article  CAS  Google Scholar 

  27. Xi H, Hou X, Liu Y, Qing S, Gao Z (2014) Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming. Angew Chem Int Ed 53:12080–12083. https://doi.org/10.1002/anie.201405213

    Article  CAS  Google Scholar 

  28. Shi L, Huang Y, Lu Z-H et al (2021) Surface property of the Cu doped γ-Al2O3: A density functional theory study. Appl Surf Sci 535:147651. https://doi.org/10.1016/j.apsusc.2020.147651

    Article  CAS  Google Scholar 

  29. Feng G, Huo C-F, Li Y-W, Wang J, Jiao H (2011) Structures and energies of iron promoted γ-Al2O3 surface: a computational study. Chem Phys Lett 510:224–227. https://doi.org/10.1016/j.cplett.2011.05.035

    Article  CAS  Google Scholar 

  30. Ma FF, Ma SH, Jiao ZY, Dai XQ (2016) Adsorption and decomposition of H2O on cobalt surfaces: a DFT study. Appl Surf Sci 384:10–17. https://doi.org/10.1016/j.apsusc.2016.05.019

    Article  CAS  Google Scholar 

  31. Xu XL, Li JQ (2011) DFT studies on H2O adsorption and its effect on CO oxidation over spinel Co3O4 (110) surface. Surf Sci 605:1962–1967. https://doi.org/10.1016/j.susc.2011.07.013

    Article  CAS  Google Scholar 

  32. Mohsenzadeh A, Bolton K, Richards T (2014) DFT study of the adsorption and dissociation of water on Ni (111), Ni (110) and Ni (100) surfaces. Surf Sci 627:1–10. https://doi.org/10.1016/j.susc.2014.04.006

    Article  CAS  Google Scholar 

  33. Yu N, Zhang W-B, Wang N, Wang Y-F, Tang B-Y (2008) Water adsorption on a NiO (100) surface: a GGA+U study. J Phys Chem C 112:452–457. https://doi.org/10.1021/jp070641h

    Article  CAS  Google Scholar 

  34. Ken O, Bin L, Jin Z, Jordan KD, Jinlong Y, Hrvoje P (2005) Wet electrons at the H2O/TiO2(110) surface. Science 308:1154–1158. https://doi.org/10.1126/science.1109366

    Article  CAS  Google Scholar 

  35. Yu X, Zhang X, Wang H, Feng G (2017) High coverage water adsorption on the CuO(111) surface. Appl Surf Sci 425:803–810. https://doi.org/10.1016/j.apsusc.2017.07.086

    Article  CAS  Google Scholar 

  36. Zhang J, Zhang R, Wang B, Ling L (2016) Insight into the adsorption and dissociation of water over different CuO(111) surfaces: the effect of surface structures. Appl Surf Sci 364:758–768. https://doi.org/10.1016/j.apsusc.2015.12.211

    Article  CAS  Google Scholar 

  37. Yu X, Zhang X, Wang S, Feng G (2015) A computational study on water adsorption on Cu2O(111) surfaces: the effects of coverage and oxygen defect. Appl Surf Sci 343:33–40. https://doi.org/10.1016/j.apsusc.2015.03.065

    Article  CAS  Google Scholar 

  38. Hass KC, Schneider WF, Curioni A, Andreoni W (1998) The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science 282:265–268. https://doi.org/10.1126/science.282.5387.265

    Article  CAS  Google Scholar 

  39. Lejaeghere K, Bihlmayer G, Bjorkman T et al (2016) Reproducibility in density functional theory calculations of solids. Science 351:aad3000. https://doi.org/10.1126/science.aad3000

    Article  CAS  Google Scholar 

  40. Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39:1–24. https://doi.org/10.1080/10408436.2013.772503

    Article  CAS  Google Scholar 

  41. Wang F, Ma J, Xin S et al (2020) Resolving the puzzle of single-atom silver dispersion on nanosized gamma-Al2O3 surface for high catalytic performance. Nat Commun 11:529. https://doi.org/10.1038/s41467-019-13937-1

    Article  CAS  Google Scholar 

  42. Li J, Shi L, Feng G, Shi Z, Sun C, Kong D (2020) Selective hydrogenation of naphthalene over γ-Al2O3-supported NiCu and NiZn bimetal catalysts. Catalysts 10:1215. https://doi.org/10.3390/catal10101215

    Article  CAS  Google Scholar 

  43. Feng G, Huo C-F, Deng C-M et al (2009) Isopropanol adsorption on γ-Al2O3 surfaces: a computational study. J Mol Catal A Chem 304:58–64. https://doi.org/10.1016/j.molcata.2009.01.024

    Article  CAS  Google Scholar 

  44. Ja Hun K, Jianzhi H, Donghai M et al (2009) Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science 325:1670–1673. https://doi.org/10.1126/science.1176745

    Article  CAS  Google Scholar 

  45. Sun G, Alexandrova AN, Sautet P (2019) Pt8 cluster on alumina under a pressure of hydrogen: support-dependent reconstruction from first-principles global optimization. J Phys Chem C 151:194703. https://doi.org/10.1063/1.5129296

    Article  CAS  Google Scholar 

  46. Mager-Maury C, Chizallet C, Sautet P, Raybaud P (2012) Platinum nanoclusters stabilized on γ-alumina by chlorine used as a capping surface ligand: a density functional theory study. ACS Catal 2:1346–1357. https://doi.org/10.1021/cs300178y

    Article  CAS  Google Scholar 

  47. Gu J, Wang J, Leszczynski J (2021) Single site Fe on the (110) surface of gamma-Al2O3: insights from a DFT study including the periodic boundary approach. Phys Chem Chem Phys 23:7164–7177. https://doi.org/10.1039/d0cp05718e

    Article  CAS  Google Scholar 

  48. Feng G, Ganduglia-Pirovano MV, Huo C-F, Sauer J (2018) Hydrogen spillover to copper clusters on hydroxylated γ-Al2O3. J Phys Chem C 122:18445–18455. https://doi.org/10.1021/acs.jpcc.8b03764

    Article  CAS  Google Scholar 

  49. Corral Valero M, Raybaud P, Sautet P (2006) Influence of the hydroxylation of γ-Al2O3 surfaces on the stability and diffusion of single Pd atoms: a DFT study. J Phys Chem B 110:1759–1767. https://doi.org/10.1021/jp0554240

    Article  CAS  Google Scholar 

  50. Pan Y-X, Liu C-J, Ge Q (2010) Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3: a density functional theory study. J Catal 272:227–234. https://doi.org/10.1016/j.jcat.2010.04.003

    Article  CAS  Google Scholar 

  51. Yang T, Ehara M (2017) Probing the electronic structures of Con (n= 1–5) clusters on γ-Al2O3 surfaces using first-principles calculations. Phys Chem Chem Phys 19:3679–3687. https://doi.org/10.1039/C6CP06785A

    Article  CAS  Google Scholar 

  52. Khivantsev K, Jaegers NR, Kwak JH, Szanyi J, Kovarik L (2021) Precise identification and characterization of catalytically active sites on the surface of γ-alumina. Angew Chem Int Ed 133:17663–17671. https://doi.org/10.1002/ange.202102106

    Article  Google Scholar 

  53. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  54. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  55. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  56. Blöchl PE, Först CJ, Schimpl J (2003) Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bull Mater Sci 26:33–41. https://doi.org/10.1007/BF02712785

    Article  Google Scholar 

  57. Pe B (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  58. Berne BJ, Ciccotti G, Coker DF (1998) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Book  Google Scholar 

  59. Li J, Zhan X, Zhang Y, Jacobs G, Das T, Davis BH (2002) Fischer-Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Appl Catal, A-Gen 228:203–212. https://doi.org/10.1016/S0926-860X(01)00977-2

    Article  CAS  Google Scholar 

  60. Zhang N, Chen X, Chu B, Cao C, Jin Y, Cheng Y (2017) Catalytic performance of Ni catalyst for steam methane reforming in a micro-channel reactor at high pressure. Chem Eng Process 118:19–25. https://doi.org/10.1016/j.cep.2017.04.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2022-K19), National Natural Science Foundation of China (Grant Nos. 21875096, 21868016, 22005296 and 21763018), the Foundation of State and the Key Laboratory for Environment and Energy Catalysis of Jiangxi Province (Grant No. 20181BCD40004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongbin Zhang, Gang Feng or Jian-Li Zhang.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Shi, L., Ye, R. et al. Theoretical investigation of high coverage water adsorption on Co and Ni doped γ-Al2O3 surface. J Mater Sci 57, 16710–16724 (2022). https://doi.org/10.1007/s10853-022-07680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07680-0

Navigation