Skip to main content
Log in

Semi-solid compression of 2A14 alloy with high solid fraction: rheology, constitutive equation and microstructure

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, semi-solid compression of 2A14 aluminum alloy was conducted on the Gleeble1500D thermophysical simulation experimental compressor to investigate the rheological behavior of 2A14 alloy at high solid fraction in the semi-solid state. The main objective of the study was to establish the constitutive equation suitable for serving the simulation and practical thixoforging forming process of the 2A14 alloy. Another purpose is to investigate the effect of heat deformation parameters on the microstructure of 2A14 alloy. The apparent viscosity of semi-solid 2A14 alloy with high solid fraction as a function of equivalent shear rate was obtained. The constitutive equation for 2A14 aluminum alloy at true strain below 0.2 was established. Increasing the compression temperature or strain rate is beneficial to the deformation and grain refinement in the hard deformation zone, but at the same time, it will also intensify the aggregation of micro-voids in the transition zone into micro-cracks and the formation of macro-cracks. The macroscopic compression instability at true strains above 0.2 was discussed, mainly attributed to the dilatant shear bands generated in the strain localization region inherent in the compression deformation and the higher thermal crack sensitivity of the 2A14 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Spencer DB, Mehrabian R, Flemings MC (1972) Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall Mater Trans B 3:1925–1932. https://doi.org/10.1007/BF02642580

    Article  CAS  Google Scholar 

  2. Flemings MC (1991) Behavior of metal alloys in the semisolid state. Metall Trans A 22:957–981. https://doi.org/10.1007/BF02661090

    Article  Google Scholar 

  3. Czerwinski F (2018) Thermomechanical processing of metal feedstock for semisolid forming: a review. Metall Mater Trans B 49:3220–3257. https://doi.org/10.1007/s11663-018-1387-4

    Article  CAS  Google Scholar 

  4. Pola A, Tocci M, Kapranos P (2018) Microstructure and properties of semi-solid aluminum alloys: a literature review. Metals. https://doi.org/10.3390/met8030181

    Article  Google Scholar 

  5. Su TC, O’Sullivan C, Yasuda H, Gourlay CM (2020) Rheological transitions in semi-solid alloys: In-situ imaging and LBM-DEM simulations. Acta Mater 191:24–42. https://doi.org/10.1016/j.actamat.2020.03.011

    Article  CAS  Google Scholar 

  6. Dumanić I, Jozić S, Bajić D (2021) Simulation of real image microstructural model of semi-solid aluminium alloy using a coupled eulerian-lagrangian approach. Int J Met. https://doi.org/10.1007/s40962-021-00689-2

    Article  Google Scholar 

  7. Sheykh-jaberi F, Cockcroft SL, Maijer DM, Phillion AB (2020) Meso-scale modelling of semi-solid deformation in aluminum foundry alloys: Effects of feeding and microstructure on hot tearing susceptibility. J Mater Process Technol 279:116551. https://doi.org/10.1016/j.jmatprotec.2019.116551

    Article  CAS  Google Scholar 

  8. Qu W, Li D, Zhang F, Luo M, Hu X, Zhang Y (2020) Multiphase modelling of the transient flow for Sn-15Pb and 357.0 alloys in semi-solid die casting process. J Mater Process Technol 278:116534

    Article  CAS  Google Scholar 

  9. Ma Z, Zhang H, Zhang X et al (2019) Rheological behaviour of partially solidified A356 alloy: experimental study and constitutive modelling. J Alloys Compd 803:1141–1154. https://doi.org/10.1016/j.jallcom.2019.06.345

    Article  CAS  Google Scholar 

  10. Lashkari O, Ghomashchi R (2007) Rheological behavior of semi-solid Al–Si alloys: effect of morphology. Mater Sci Eng A 454–455:30–36. https://doi.org/10.1016/j.msea.2007.01.003

    Article  CAS  Google Scholar 

  11. Lashkari O, Ghomashchi R (2008) Deformation behavior of semi-solid A356 Al–Si alloy at low shear rates: effect of fraction solid. Mater Sci Eng A 486:333–340. https://doi.org/10.1016/j.msea.2007.09.009

    Article  CAS  Google Scholar 

  12. Lashkari O, Ghomashchi R, Ajersch F (2007) Deformation behavior of semi-solid A356 Al–Si alloy at low shear rates: the effect of sample size. Mater Sci Eng A 444:198–205. https://doi.org/10.1016/j.msea.2006.08.067

    Article  CAS  Google Scholar 

  13. Li H, Cao M, Niu L et al (2021) Establishment of macro-micro constitutive model and deformation mechanism of semi-solid Al6061. J Alloys Compd 854:157124. https://doi.org/10.1016/j.jallcom.2020.157124

    Article  CAS  Google Scholar 

  14. Sheykh-jaberi F, Cockcroft SL, Maijer DM, Phillion AB (2019) Comparison of the semi-solid constitutive behaviour of A356 and B206 aluminum foundry alloys. J Mater Process Technol 266:37–45. https://doi.org/10.1016/j.jmatprotec.2018.10.029

    Article  CAS  Google Scholar 

  15. Chen G, Lin F, Yao S et al (2016) Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions. J Alloys Compd 674:26–36. https://doi.org/10.1016/j.jallcom.2016.02.254

    Article  CAS  Google Scholar 

  16. Altuhafi FN, O’Sullivan C, Sammonds P et al (2021) Triaxial compression on semi-solid alloys. Metall Mater Trans A 52:2010–2023. https://doi.org/10.1007/s11661-021-06213-9

    Article  CAS  Google Scholar 

  17. Giraud E, Suéry M, Coret M (2012) High temperature compression behavior of the solid phase resulting from drained compression of a semi-solid 6061 alloy. Mater Sci Eng A 532:37–43. https://doi.org/10.1016/j.msea.2011.10.059

    Article  CAS  Google Scholar 

  18. Wang B, Yi Y, He H, Huang S (2021) Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy. J Alloys Compd 871:159459. https://doi.org/10.1016/j.jallcom.2021.159459

    Article  CAS  Google Scholar 

  19. Wang Q, He X, Deng Y et al (2021) Experimental study of grain structures evolution and constitutive model of isothermal deformed 2A14 aluminum alloy. J Mater Res Technol 12:2348–2367. https://doi.org/10.1016/j.jmrt.2021.04.025

    Article  CAS  Google Scholar 

  20. Tzimas E, Zavaliangos A (1999) Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta Mater 47:517–528. https://doi.org/10.1016/S1359-6454(98)00356-5

    Article  CAS  Google Scholar 

  21. Chen Q, Chen G, Ji X et al (2017) Compound forming of 7075 aluminum alloy based on functional integration of plastic deformation and thixoformation. J Mater Process Technol 246:167–175. https://doi.org/10.1016/j.jmatprotec.2017.03.023

    Article  CAS  Google Scholar 

  22. Shi L, Yan J, Peng B, Han Y (2011) Deformation behavior of semi-solid Zn–Al alloy filler metal during compression. Mater Sci Eng A 528:7084–7092. https://doi.org/10.1016/j.msea.2011.05.059

    Article  CAS  Google Scholar 

  23. Zhang JX, Sun HY, Li J, Liu WC (2019) Effect of precipitation state on recrystallization texture of continuous cast AA 2037 aluminum alloy. Mater Sci Eng A 754:491–501. https://doi.org/10.1016/j.msea.2019.03.107

    Article  CAS  Google Scholar 

  24. Chen X, Peng Y, Chen C et al (2019) Mechanical behavior and texture evolution of aluminum alloys subjected to strain path changes: experiments and modeling. Mater Sci Eng A 757:32–41. https://doi.org/10.1016/j.msea.2019.04.091

    Article  CAS  Google Scholar 

  25. Wang X, Shi T, Jiang Z et al (2019) Relationship among grain size, texture and mechanical properties of aluminums with different particle distributions. Mater Sci Eng A 753:122–134. https://doi.org/10.1016/j.msea.2019.03.034

    Article  CAS  Google Scholar 

  26. Kirkwood DH, Sellars CM, Boyed L (1992) Thixotropic materials

  27. Dienes GJ, Klemm HF (1946) Theory and application of the parallel plate plastometer. J Appl Phys 17:458–471. https://doi.org/10.1063/1.1707739

    Article  CAS  Google Scholar 

  28. Laxmanan V, Flemings MC (1980) Deformation of semi-solid Sn-15 Pct Pb alloy. Metall Trans A 11:1927–1937. https://doi.org/10.1007/BF02655112

    Article  Google Scholar 

  29. Gebelin JC, Suery M, Favier D (1999) Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys. Mater Sci Eng A 272:134–144. https://doi.org/10.1016/S0921-5093(99)00467-0

    Article  Google Scholar 

  30. Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14:1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0

    Article  CAS  Google Scholar 

  31. Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15:22–32. https://doi.org/10.1063/1.1707363

    Article  Google Scholar 

  32. Meshkabadi R, Pouyafar V, Javdani A, Faraji G (2017) An enhanced steady-state constitutive model for semi-solid forming of Al7075 based on cross model. Metall Mater Trans A 48:4275–4285. https://doi.org/10.1007/s11661-017-4192-9

    Article  CAS  Google Scholar 

  33. Xu Y, Chen C, Jia J et al (2018) Constitutive behavior of a SIMA processed magnesium alloy by employing repetitive upsetting-extrusion (RUE). J Alloys Compd 748:694–705. https://doi.org/10.1016/j.jallcom.2018.03.205

    Article  CAS  Google Scholar 

  34. Wang Q, Zhou R, Li Y, Geng B (2020) Characteristics of dynamic recrystallization in semi-solid CuSn10P1 alloy during hot deformation. Mater Charact 159:109996. https://doi.org/10.1016/j.matchar.2019.109996

    Article  CAS  Google Scholar 

  35. Ferreira JPG, Lourençato LA, Roca AS, Fals HDC (2020) The influence of strontium on microstructural and rheological behavior of the semi-solid A380 aluminum alloy. Metall Mater Trans A 51:6421–6431. https://doi.org/10.1007/s11661-020-05996-7

    Article  CAS  Google Scholar 

  36. Geng S, Jiang P, Shao X et al (2018) Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: a phase-field study. Scr Mater 150:120–124. https://doi.org/10.1016/j.scriptamat.2018.03.013

    Article  CAS  Google Scholar 

  37. Modigell M, Pola A, Tocci M (2018) Rheological characterization of semi-solid metals: a review. Metals. https://doi.org/10.3390/met8040245

    Article  Google Scholar 

  38. Gourlay CM, Dahle AK (2007) Dilatant shear bands in solidifying metals. Nature 445:70–73. https://doi.org/10.1038/nature05426

    Article  CAS  Google Scholar 

  39. Kareh KM, O’Sullivan C, Nagira T et al (2017) Dilatancy in semi-solid steels at high solid fraction. Acta Mater 125:187–195. https://doi.org/10.1016/j.actamat.2016.11.066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) [51875124] and the National Key Research and Development Project [2019YFB2006503].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jufu Jiang or Ying Wang.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, J., Zhang, Y. et al. Semi-solid compression of 2A14 alloy with high solid fraction: rheology, constitutive equation and microstructure. J Mater Sci 57, 16507–16527 (2022). https://doi.org/10.1007/s10853-022-07656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07656-0

Navigation