Skip to main content
Log in

Dielectric properties of novel high-entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)Nb2O6-δ tungsten bronze ceramics

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel high-entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)Nb2O6-δ tungsten bronze ceramics, fabricated by conventional solid-state reaction, were first studied to reveal the effects of sintering temperatures on the crystal structure, microstructure and dielectric properties of these ceramics. The results show that all the prepared ceramics have tetragonal tungsten bronze structures after sintering at 1250–1350 °C. With increasing sintering temperature, high density up to 93% theoretical and uniform grain distribution are obtained. The dielectric properties are apparently affected by both frequency and temperature, and all ceramics exhibit quintessential relaxation peaks and obvious frequency dispersion phenomena. The optimal value of dielectric constant εr reaches as high as 1.1 × 106 at 100 Hz and 625 °C for the ceramic sintered at 1250 °C, which is almost 1290 times that of the (Ba1/3Sr1/3Ca1/3)Nb2O6 ceramics under the same conditions. Furthermore, the temperature stability of dielectric constant can also be improved through high-entropy effect. The obtained results demonstrate that it is feasible to design high-entropy ceramics to improve the dielectric properties of ANb2O6 ceramics. We have reason to believe that entropy engineering is a credible strategy for tailoring properties of ceramic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  3. Rost CM, Sachet E, Borman T, Moballegh A, Dikey EC, Hou D, Curtarolo JLJ, Maria JP (2015) Entropy-stabilized oxides. Nat Commun 6:8485. https://doi.org/10.1038/ncomms9485

    Article  CAS  Google Scholar 

  4. Mishra K, Sahay Rajesh PP, Rohit RS (2019) Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. J Mater Sci 54:4433–4443. https://doi.org/10.1007/s10853-018-3153-z

    Article  CAS  Google Scholar 

  5. Jiang SC, Hu T, Gild J, Zhou N, Nie J, Qin M, Harrington T, Vecchio K, Luo J (2018) A new class of high-entropy perovskite oxides. Scripta Mater 142:116–120. https://doi.org/10.1016/j.scriptamat.2017.08.040

    Article  CAS  Google Scholar 

  6. Yan X, Constantin L, Lu Y, Silvain JF, Nastasi M, Cui B (2018) (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J Am Ceram Soc 101:4486–4491. https://doi.org/10.1111/jace.15779

    Article  CAS  Google Scholar 

  7. Liu JX, Shen XQ, Wu Y, Li F, Liang YC, Zhang GJ (2020) Mechanical properties of hot-pressed high-entropy diboride-based ceramics. J Adv Ceram 9(4):503–510. https://doi.org/10.1007/s40145-020-0383-8

    Article  CAS  Google Scholar 

  8. Bérardan D, Franger S, Meena AK, Dragoe N (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541. https://doi.org/10.1039/C6TA03249D

    Article  CAS  Google Scholar 

  9. Bérardan D, Franger S, Dragoe D, Meena AK, Dragoe N (2016) Colossal dielectric constant in high entropy oxides. Phys Status Solidi (RRL) 10:328–333. https://doi.org/10.1002/pssr.201600043

    Article  CAS  Google Scholar 

  10. Yamamuar H, Nishino H, Kakiunma K (2004) Ac Conductivity for Eu2Zr2O7 and La2Ce2O7 with pyrochlore-type composition. J Ceram Soc Jpn 112:553–558. https://doi.org/10.2109/jcersj.112.553

    Article  Google Scholar 

  11. Chen KP, Pei XT, Tang L, Cheng HR, Li ZM, Li CW, Zhang XW, An LN (2018) A five-component entropy-stabilized fluorite oxide. J Eur Ceram Soc 38:4161–4164. https://doi.org/10.1016/j.jeurceramsoc.2018.04.063

    Article  CAS  Google Scholar 

  12. Dabrowa J, Stygar M, Mikula A, Knapik A, Mroczka K, Tejchman W, Danielewski M, Martin M (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36. https://doi.org/10.1016/j.matlet.2017.12.148

    Article  CAS  Google Scholar 

  13. Zhou SY, Pu YP, Zhang QW, Shi RK, Guo X, Wang W, Ji JM, Wei TC, Ouyang T (2020) Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceram Int 46:7430–7437. https://doi.org/10.1016/j.ceramint.2019.11.239

    Article  CAS  Google Scholar 

  14. Hu CZ, Zhu QH, Sun Z, Guo Z, Liu LJ, Fang L (2017) Dielectric properties of unfilled tetragonal tungsten bronze Ba4PrFe0.5Nb0.5O30 ceramics. J Wuhan Univ Technol 32:904–909. https://doi.org/10.1007/s11595-017-1688-5

    Article  CAS  Google Scholar 

  15. Han XK, Wei LL, Yang ZP, Zhang T (2013) Phase formation, dielectric and ferroelectric properties of CaxBa1-xNb2O6 ceramics. Ceram Int 39:4853–4860. https://doi.org/10.1016/j.ceramint.2012.11.078

    Article  CAS  Google Scholar 

  16. Kakimoto K, Yoshifuji T, Ohsato H (2007) Densification of tungsten-bronze KBa2Nb5O15 lead-free piezoelectric ceramics. J Eur Ceram Soc 27:4111–4114. https://doi.org/10.1016/j.jeurceramsoc.2007.02.112

    Article  CAS  Google Scholar 

  17. Abubakarov AG, Pavlenko AV, Shilkina LA, Turik AV, Verbenko IA, Reznichenko LA, Andryushin KP, Andryushina IN et al (2018) Structurization, phase rule diagram, relaxation processes and radio-absorbing properties of solid solutions based on a binary system BaNb2O6-SrNb2O6. Appl Sci 8:1932. https://doi.org/10.3390/app8101932

    Article  CAS  Google Scholar 

  18. Duran C, Trolier-McKinstry S, Messing GL (2002) Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. J Mater Res 17(9):2399–2409. https://doi.org/10.1557/JMR.2002.0351

    Article  CAS  Google Scholar 

  19. Duran C, Trolier-McKinstry S, Messing GL (2000) Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. J Am Ceram Soc 83:2203–2213. https://doi.org/10.1111/j.1151-2916.2000.tb01536.x

    Article  CAS  Google Scholar 

  20. Yang ZP, Gu R (2010) Phase formation, microstructure and dielectric properties of Sr0.53Ba0.47Nb2-xTaxO6 ceramics. J Alloy Compd 504:211–216. https://doi.org/10.1016/j.jallcom.2010.05.093

    Article  CAS  Google Scholar 

  21. Gao WL, Zhang HJ (2010) Growth, electromechanical, and electro-optic properties of tungsten bronze (Ca0.28Ba0.72)0.25(Sr0.6Ba0.4)0.75Nb2O6 single crystal. J Appl Phys 107:094101. https://doi.org/10.1063/1.3399604

    Article  CAS  Google Scholar 

  22. Liu X, Zhu M, Chen Z, Fang B, Ding J, Zhao X, Xu H, Luo H (2014) Structure and electrical properties of Li-doped BaTiO3-CaTiO3-BaZrO3 lead-free ceramics prepared by citrate method. J Alloys Compd 613:219–225. https://doi.org/10.1016/j.jallcom.2014.06.046

    Article  CAS  Google Scholar 

  23. Peng XY, Zhu LF, Zhang BP, Li S (2019) Enhanced ferroelectric and piezoelectric properties of (Bi1-xLax)FeO3-BaTiO3 ceramics near Morphotropic phase boundary. J Electroceram 42:67–73. https://doi.org/10.1007/s10832-018-0155-9

    Article  CAS  Google Scholar 

  24. Pu YP, Zhang QW, Li R, Chen M, Du XY, Zhou SY (2019) Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Appl Phys Lett 115:223901. https://doi.org/10.1063/1.5126652

    Article  CAS  Google Scholar 

  25. Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemns O, Hahn H (2018) Rare earth and transition metal based entropy stabilized perovskite type oxides. J Eur Cream Soc 38:2318–2327. https://doi.org/10.1016/j.jeurceramsoc.2017.12.058

    Article  CAS  Google Scholar 

  26. Hu CZ, Fang L, Peng XY, Li CC, Wu BL, Liu LJ (2010) Dielectric and ferroelectric properties of tungsten bronze ferroelectrics in SrO-Pr2O3-TiO2-Nb2O5 system. Mater Chem Phys 121:114–117. https://doi.org/10.1016/j.matchemphys.2010.01.014

    Article  CAS  Google Scholar 

  27. Yang B, Wei LL, Chao XL, Wang ZM, Wang ZP (2015) Role of structural modulation in electrical properties of tungsten bronze (Ca0.28Ba0.72)2.5-0.5xNaxNb5O15 ceramics. J Alloy Compd 632:368–375. https://doi.org/10.1016/j.jallcom.2015.01.247

    Article  CAS  Google Scholar 

  28. von der Mühll R, Simon A, Elissalde C, Villesuzanne A (2004) Dielectric investigation of a new TKWB lead free relaxor. J Phys Chem Solids 65:1039–1043. https://doi.org/10.1016/j.jpcs.2003.11.023

    Article  CAS  Google Scholar 

  29. Dursun S, Duran C (2010) Processing and electrical properties of Pb0.6Ba0.4Nb2O6 ceramics. J Mater Res 25(11):2143–2149. https://doi.org/10.1557/JMR.2010.0284

    Article  CAS  Google Scholar 

  30. Waser R, Baiatu T, Hardtl K (1990) dc Electrical degradation of perovskite-type titanates: I, ceramics. J Am Ceram Soc 73:1645–1653. https://doi.org/10.1111/j.1151-2916.1990.tb09809.x

    Article  CAS  Google Scholar 

  31. Xie HH, Li JS, Yang SZ, Wu L, Li PF, Qi XW (2021) Microstructures and dielectric properties of novel (La0.2Pr0.2Nd0.2Sm0.2Eu0.2)2Ce2O7 high entropy ceramics. J Mater Sci Mater Electron 32:27860–27870. https://doi.org/10.1007/s10854-021-07168-8

    Article  CAS  Google Scholar 

  32. Parida BN, Das PR (2014) Synthesis and characterization of a new ferroelectric oxide Li2Pb2Pr2W2Ti4O30. J Alloy Compd 585:234–239. https://doi.org/10.1016/j.jallcom.2013.09.170

    Article  CAS  Google Scholar 

  33. Kulkarni AR, Patro PK (2010) Lead free strontium barium niobate ferroelectric ceramics-a review on synthesis, microstructure and dielectric properties. Trans Indian Ceram Soc 69:135–146. https://doi.org/10.1080/0371750X.2010.11090830

    Article  CAS  Google Scholar 

  34. Parida BN, Das PR, Padhee R, Choudhary RNP (2012) Phase transition and conduction mechanism of rare earth based tungsten-bronze compounds. J Alloy Compd 540:267–274. https://doi.org/10.1016/j.jallcom.2012.06.077

    Article  CAS  Google Scholar 

  35. Jangra S, Sanghi S, Agarwal A, Rangi M, Kaswan K (2018) Effects of Nd3+ and high-valence Nb5+ co-doping on the structural, dielectric and magnetic properties of BiFeO3 multiferroics. Ceram Int 44:7683–7693. https://doi.org/10.1016/j.ceramint.2018.01.194

    Article  CAS  Google Scholar 

  36. Divya Lakshmi S, Shameem Banu IB (2019) Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics. J Sol-Gel Sci Technol 89:713–721. https://doi.org/10.1007/s10971-018-4901-x

    Article  CAS  Google Scholar 

  37. Huang S, Su KP, Wang HO, Yuan SL, Huo DX (2017) High temperature dielectric response in R3Fe5O12 (R = Eu, Gd) ceramics. Mater Chem Phys 197:11–16. https://doi.org/10.1016/j.matchemphys.2017.05.016

    Article  CAS  Google Scholar 

  38. Wu JB, Nan CW, Lin YH, Deng Y (2002) Giant dielectric permittivity observed in Li and Ti doped NiO. Phys Rev Lett 89:217601. https://doi.org/10.1103/PhysRevLett.89.217601

    Article  CAS  Google Scholar 

  39. Chandra Sekhar KSKR, Mahesh MLV, Sreenivasu T, Krishna YR, Mouli KC, Tirupathi P (2021) Structural evolution, dielectric relaxation and modulus spectroscopic studies in Dy substituted NBT-BT ferroelectric ceramics. J Mater Sci Mater Electron 32:8628–8647. https://doi.org/10.1007/s10854-021-05506-4

    Article  CAS  Google Scholar 

  40. Ang C, Yu Z, Cross LE (2000) Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys Rev B 62:228–236. https://doi.org/10.1103/PhysRevB.62.228

    Article  Google Scholar 

  41. Pattanayak S, Choudhary RNP, Das PR (2014) Effect of Sm-substitution on structural, electrical and magnetic properties of BiFeO3. Electron Mater Lett 10:165–172. https://doi.org/10.1007/s13391-013-3050-1

    Article  CAS  Google Scholar 

  42. Sun XJ, Deng JM, Liu SS, Yan TX, Peng BL, Jia WH, Mei ZM, Su HB, Fang L, Liu LJ (2016) Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics. Appl Phys A 122:864. https://doi.org/10.1007/s00339-016-0407-y

    Article  CAS  Google Scholar 

  43. Mahato DK, Rudra M, Sinha TP (2016) Structural and electrical features of rare earth based double perovskite oxide: Pr2NiZrO6. J Alloy Compd 689:617–624. https://doi.org/10.1016/j.jallcom.2016.08.024

    Article  CAS  Google Scholar 

  44. Li YH, Fang L, Liu LJ, Huang YM, Hu CZ (2012) Giant dielectric response and charge compensation of Li- and Co-doped NiO ceramics. Mat Sci Eng B 177:673–677. https://doi.org/10.1016/j.mseb.2012.03.054

    Article  CAS  Google Scholar 

  45. Sun XJ, Deng JM, Liu LJ, Liu SS, Shi DP, Fang L, Elouadi B (2016) Dielectric properties of BiAlO3-modified (Na, K, Li)NbO3 lead-free ceramics. Mater Res Bull 73:437–445. https://doi.org/10.1016/j.materresbull.2015.10.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51972048), the Natural Science Foundation of Hebei Province (E2021501017), the Young Talents Program of Hebei Province (No. BJ2020202) and the Fundamental Research Funds for the Central Universities (No. N2123003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsheng Li or Xiwei Qi.

Ethics declarations

Conflict of interest

The authors declare that the work described is original research and has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed, and there is no conflict of interests during the submission of this manuscript.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 177 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, J., Ni, B. et al. Dielectric properties of novel high-entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)Nb2O6-δ tungsten bronze ceramics. J Mater Sci 57, 15901–15912 (2022). https://doi.org/10.1007/s10853-022-07617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07617-7

Navigation