Skip to main content
Log in

Detwinning of AZ31 magnesium alloy during in situ tension

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study is to reveal the three detwinning events in AZ31 Mg alloy during in situ tensile test via electron backscatter diffraction (EBSD). To better understand the detwinning mechanisms, shear displacement gradient tensors were used to evaluate local strain accommodation. The results revealed that the strain concentration was responsible for the detwinning of the pre-existing twin. Also, for the two newly formed twins, the shear displacement gradient tensors of the basal and prismatic slip in the adjacent grains can hinder their growth and eventually lead to the detwinning. Detwinning can occur when grains lack effective deformation modes to accommodate the strain from neighboring grains. The kind of local strain accommodation was affected by twin variants and slip modes on both sides of the grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

The raw and processed data are not available at the time of submission because they are part of our ongoing research work.

References

  1. Hirsch J, Al-Samman T (2013) Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater 61:818. https://doi.org/10.1016/j.actamat.2012.10.044

    Article  CAS  Google Scholar 

  2. Hazeli K, Cuadra J, Vanniamparambil PA, Kontsos A (2013) In situ identification of twin-related bands near yielding in a magnesium alloy. Scripta Mater 68:83. https://doi.org/10.1016/j.scriptamat.2012.09.009

    Article  CAS  Google Scholar 

  3. Martin G, Sinclair CW, Schmitt J-H (2013) Plastic strain heterogeneities in an Mg–1Zn–0.5Nd alloy. Scripta Materialia 68:695. https://doi.org/10.1016/j.scriptamat.2013.01.017

    Article  CAS  Google Scholar 

  4. Martin G, Sinclair CW, Lebensohn RA (2014) Microscale plastic strain heterogeneity in slip dominated deformation of magnesium alloy containing rare earth. Mater Sci Eng, A 603:37. https://doi.org/10.1016/j.msea.2014.01.102

    Article  CAS  Google Scholar 

  5. Sánchez-Martín R, Pérez-Prado MT, Segurado J et al (2014) Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Mater 71:283. https://doi.org/10.1016/j.actamat.2014.03.014

    Article  CAS  Google Scholar 

  6. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52:5093. https://doi.org/10.1016/j.actamat.2004.07.015

    Article  CAS  Google Scholar 

  7. Cepeda-Jiménez CM, Pérez-Prado MT (2016) Microplasticity-based rationalization of the room temperature yield asymmetry in conventional polycrystalline Mg alloys. Acta Mater 108:304. https://doi.org/10.1016/j.actamat.2016.02.023

    Article  CAS  Google Scholar 

  8. Cepeda-Jiménez CM, Molina-Aldareguia JM, Pérez-Prado MT (2015) Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater 84:443. https://doi.org/10.1016/j.actamat.2014.10.001

    Article  CAS  Google Scholar 

  9. Wang J, Molina-Aldareguía JM, Llorca J (2020) Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys. Acta Mater 188:215. https://doi.org/10.1016/j.actamat.2020.02.006

    Article  CAS  Google Scholar 

  10. Guo C, Xin R, Xu J, Song B, Liu Q (2015) Strain compatibility effect on the variant selection of connected twins in magnesium. Mater Des 76:71. https://doi.org/10.1016/j.matdes.2015.03.041

    Article  CAS  Google Scholar 

  11. Hong S-G, Park SH, Lee CS (2010) Role of 10–12 twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater 58:5873. https://doi.org/10.1016/j.actamat.2010.07.002

    Article  CAS  Google Scholar 

  12. Song B, Xin R, Liang Y, Chen G, Liu Q (2014) Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet. Mater Sci Eng, A 614:106. https://doi.org/10.1016/j.msea.2014.07.026

    Article  CAS  Google Scholar 

  13. Yang B, Shi C, Zhang S et al (2021) Quasi-in-situ study on 10–12 twinning-detwinning behavior of rolled Mg-Li alloy in two-step compression (RD)-compression (ND) process. J Magnesium Alloys. https://doi.org/10.1016/j.jma.2021.01.006

    Article  Google Scholar 

  14. Sarker D, Friedman J, Chen DL (2015) De-twinning and Texture Change in an extruded AM30 magnesium alloy during compression along normal direction. J Mater Sci Technol 31:264. https://doi.org/10.1016/j.jmst.2014.11.018

    Article  CAS  Google Scholar 

  15. Guan XX, Lu L, Luo SN, Fan D (2021) In situ observations of detwinning and strain localization in pure titanium. Mater Sci Eng, A. https://doi.org/10.1016/j.msea.2021.141073

    Article  Google Scholar 

  16. Zhang J, Xi G, Wan X, Fang C (2017) The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy. Acta Mater 133:208. https://doi.org/10.1016/j.actamat.2017.05.034

    Article  CAS  Google Scholar 

  17. Xu J, Guan B, Yu H, Cao X, Xin Y, Liu Q (2016) Effect of twin boundary–dislocation–solute interaction on detwinning in a Mg–3Al–1Zn Alloy. J Mater Sci Technol 32:1239. https://doi.org/10.1016/j.jmst.2016.08.023

    Article  CAS  Google Scholar 

  18. Cui Y, Bian H, Li Y, Zhao Y, Aoyagi K, Chiba A (2020) Impacts of pre-strain on twin boundary mobility of magnesium. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.152496

    Article  Google Scholar 

  19. Wang Q, Jiang B, Zhao J, Zhang D, Huang G, Pan F (2020) Pre-strain effect on twinning and de-twinning behaviors of Mg-3Li alloy traced by quasi-in-situ EBSD. Mater Sci Eng, A. https://doi.org/10.1016/j.msea.2020.140069

    Article  Google Scholar 

  20. Balogh L, Niezgoda SR, Kanjarla AK et al (2013) Spatially resolved in situ strain measurements from an interior twinned grain in bulk polycrystalline AZ31 alloy. Acta Mater 61:3612. https://doi.org/10.1016/j.actamat.2013.02.048

    Article  CAS  Google Scholar 

  21. Mam J (1995) Luster (1995) Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships. Metall Mater Trans A 26(7):1745–1756

    Article  Google Scholar 

  22. Wang B, Shi J, Ye P et al (2018) In-situ investigation on nucleation and propagation of 10–12 twins during uniaxial multi-pass compression in an extruded AZ31 Mg alloy. Mater Sci Eng, A 731:71. https://doi.org/10.1016/j.msea.2018.06.043

    Article  CAS  Google Scholar 

  23. Jonas JJ, Mu S, Al-Samman T, Gottstein G, Jiang L, Martin Ė (2011) The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater 59:2046. https://doi.org/10.1016/j.actamat.2010.12.005

    Article  CAS  Google Scholar 

  24. Wang S, Zhang Y, Schuman C et al (2015) Study of twinning/detwinning behaviors of Ti by interrupted in situ tensile tests. Acta Mater 82:424. https://doi.org/10.1016/j.actamat.2014.09.038

    Article  CAS  Google Scholar 

  25. Wang L, Yang Y, Eisenlohr P, Bieler TR, Crimp MA, Mason DE (2009) Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall and Mater Trans A 41:421. https://doi.org/10.1007/s11661-009-0097-6

    Article  CAS  Google Scholar 

  26. Koike J, Sato Y, Ando D (2008) Origin of the anomalous {10\\bar12} twinning during tensile deformation of Mg alloy sheet. Mater Trans 49:2792. https://doi.org/10.2320/matertrans.MRA2008283

    Article  CAS  Google Scholar 

  27. Zhao L, Guan B, Xin Y et al (2021) A quantitative study on mechanical behavior of Mg alloys with bimodal texture components. Acta Mater. https://doi.org/10.1016/j.actamat.2021.117013

    Article  Google Scholar 

  28. Chai YQ, Boehlert CJ, Wan YF et al (2021) Anomalous tension twinning activity in extruded Mg sheet during hard-orientation loading at room temperature. Metall Mater Trans A 52:449. https://doi.org/10.1007/s11661-020-06093-5

    Article  CAS  Google Scholar 

  29. Dudamell NV, Ulacia I, Gálvez F et al (2011) Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Mater 59:6949. https://doi.org/10.1016/j.actamat.2011.07.047

    Article  CAS  Google Scholar 

  30. Jiang S, Jia Y, Wang X (2020) In-situ analysis of slip transfer and heterogeneous deformation in tension of Mg-5.4Gd-1.8Y-1.5Zn alloy. J Magnesium Alloys 8:1186. https://doi.org/10.1016/j.jma.2020.01.002

    Article  CAS  Google Scholar 

  31. Han G, Noh Y, Chaudry UM, Park SH, Hamad K, Jun T-S (2022) 10–12 extension twinning activity and compression behavior of pure Mg and Mg-0.5Ca alloy at cryogenic temperature. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2021.142189

    Article  Google Scholar 

  32. Choi S-W, Won JW, Lee S, Hong JK, Choi YS (2018) Deformation twinning activity and twin structure development of pure titanium at cryogenic temperature. Mater Sci Eng, A 738:75. https://doi.org/10.1016/j.msea.2018.09.091

    Article  CAS  Google Scholar 

  33. Wang Z, Liu B, Wang F et al (2021) Quasi-in-situ investigation on extension twinning behavior of extruded ZC61 alloy during dynamic compression. Mater Sci Eng, A. https://doi.org/10.1016/j.msea.2021.141992

    Article  Google Scholar 

  34. Sun Q, Zhang XY, Ren Y, Tu J, Liu Q (2014) Interfacial structure of 1 0–1 2 twin tip in deformed magnesium alloy. Scripta Materialia 41:90–91. https://doi.org/10.1016/j.scriptamat.2014.07.012

    Article  CAS  Google Scholar 

  35. Sun Q, Zhang X, Shu Y, Tan L, Liu Q (2016) Two types of basal stacking faults within 101¯2 twin in deformed magnesium alloy. Mater Lett 185:355. https://doi.org/10.1016/j.matlet.2016.09.019

    Article  CAS  Google Scholar 

  36. Sun Q, Zhang XY, Ren Y, Tan L, Tu J (2015) Observations on the intersection between 1012 twin variants sharing the same zone axis in deformed magnesium alloy. Mater Charact 109:160. https://doi.org/10.1016/j.matchar.2015.09.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by High level innovation team of Liaoning Province (No. XLYC1908006), Project of Liaoning Education Department (No. LZGD2020003), Innovative Talents Support Program of Higher Education of Liaoning Province (No. 2020-389), and Liaoning Revitalization Talents Program (No. XLYC1807021 and 1907007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingli Mao or Le Zhou.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Mao, P., Wang, X. et al. Detwinning of AZ31 magnesium alloy during in situ tension. J Mater Sci 57, 15121–15136 (2022). https://doi.org/10.1007/s10853-022-07563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07563-4

Navigation