Skip to main content
Log in

In situ polymerization synthesis of polyaniline/strontium niobate nanocomposite for highly sensitive electrochemical detection of catechol

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Catechol shows a wide range of applications in real life, but it has been considered as an organic pollutant due to its potential harm to the ecological environment and human health, so the monitoring of catechol is particularly important. In this work, an electrochemical sensor for the detection of catechol was developed based on an organic/inorganic layered nanocomposite polyaniline/strontium niobate (PANI/HSr2Nb3O10) synthesized by in situ polymerization. Some characterization methods such as X-ray diffraction patterns, scanning electron microscope, high-resolution transmission electron microscope, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were systematically used to evaluate the structure, composition, and morphology of the as-prepared samples. Compared with other single component modified electrodes, PANI/HSr2Nb3O10/GCE can accelerate the electron transfer ability and possess larger electroactive surface area due to the synergistic effect of PANI and HSr2Nb3O10, which resulted in enhanced electrocatalytic activity toward catechol. A pair of well-defined redox peaks observed on PANI/HSr2Nb3O10/GCE correspond to the redox process of catechol, the mechanism of which is a reversible conversion between catechol and quinone. Under optimized conditions, the differential pulse voltammetry was performed for the detection of catechol, and the detection limit of 0.02 μM was obtained in the concentration range of 0.025–4.97 mM. Additionally, the developed electrochemical sensor also exhibits satisfied repeatability, long-term stability, reproducibility, and anti-interference and shows practicality in environmental water samples, which further reveals the feasibility of the sensor for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1
Figure 8
Scheme 2
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Zhang Z, Liu J, Fan J, Wang Z, Li L (2018) Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal Chim Acta 1009:65–72

    Article  CAS  Google Scholar 

  2. Yin D, Liu J, Bo X, Guo L (2020) Cobalt-iron selenides embedded in porous carbon nanofibers for simultaneous electrochemical detection of trace of hydroquinone, catechol and resorcinol. Anal Chim Acta 1093:35–42

    Article  CAS  Google Scholar 

  3. Yang H, Zha J, Zhang P, Qin Y, Chen T, Ye F (2017) Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol. Sensor Actuat B-Chem 247:469–478

    Article  CAS  Google Scholar 

  4. Cao X, Cai X, Feng Q, Jia S, Wang N (2012) Ultrathin CdSe nanosheets: synthesis and application in simultaneous determination of catechol and hydroquinone. Anal Chim Acta 752:101–105

    Article  CAS  Google Scholar 

  5. Guo Q, Zhang M, Zhou G, Zhu L, Feng Y, Wang H, Hou H (2016) Highly sensitive simultaneous electrochemical detection of hydroquinone and catechol with three-dimensional N-doping carbon nanotube film electrode. J Electroanal Chem 760:15–23

    Article  CAS  Google Scholar 

  6. Drozd M, Pietrzak M, Pytlos J, Malinowska E (2016) Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics. Anal Chim Acta 948:80–89

    Article  CAS  Google Scholar 

  7. Yin H, Zhang Q, Zhou Y, Ma Q, Liu T, Zhu L, Ai S (2011) Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim Acta 56:2748–2753

    Article  CAS  Google Scholar 

  8. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2015) A promising electrochemical sensing platform based on ternary composite of polyaniline-Fe2O3-reduced graphene oxide for sensitive hydroquinone determination. Chem Eng J 259:594–602

    Article  CAS  Google Scholar 

  9. Žiak L, Sádecká J, Májek P, Hroboňová K (2014) Simultaneous determination of phenolic acids and scopoletin in brandies using synchronous fluorescence spectrometry coupled with partial least squares. Food Anal Method 7:563–570

    Article  Google Scholar 

  10. Moldoveanu SC, Kiser M (2007) Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J Chromatogr A 1141:90–97

    Article  CAS  Google Scholar 

  11. Figueiredo EC, Tarley CRT, Kubota LT, Rath S, Arruda MAZ (2007) On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol. Microchem J 85:290–296

    Article  CAS  Google Scholar 

  12. Lu Q, Hu H, Wu Y, Chen S, Yuan D, Yuan R (2014) An electrogenerated chemiluminescence sensor based on gold nanoparticles@C60 hybrid for the determination of phenolic compounds. Biosens Bioelectron 60:325–331

    Article  CAS  Google Scholar 

  13. Ilager D, Shetti NP, Reddy KR, Tuwar SM, Aminabhavi TM (2022) Nanostructured graphitic carbon nitride (g-C3N4)-CTAB modified electrode for the highly sensitive detection of amino-triazole and linuron herbicides. Environ Res 204:111856

    Article  CAS  Google Scholar 

  14. Prabhu K, Malode SJ, Shetti NP, Kulkarni RM (2022) Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. Chemosphere 287:132086

    Article  CAS  Google Scholar 

  15. Ali MR, Bacchu MS, Al-Mamun MR, Rahman MM, Ahommed MS, Aly MAS, Khan MZH (2021) Sensitive MWCNT/P-Cys@ MIP sensor for selective electrochemical detection of ceftizoxime. J Mater Sci 56:12803–12813. https://doi.org/10.1007/s10853-021-06115-6

    Article  CAS  Google Scholar 

  16. Manasa G, Mascarenhas RJ, Bhakta AK, Mekhalif Z (2021) Nano-graphene-platelet/Brilliant-green composite coated carbon paste electrode interface for electrocatalytic oxidation of flavanone Hesperidin. Microchem J 160:105768

    Article  CAS  Google Scholar 

  17. Manasa G, Mascarenhas RJ, Bhakta AK, Mekhalif Z (2020) MWCNT/Nileblue heterostructured composite electrode for flavanone naringenin quantification in fruit juices. Electroanal 32:939–948

    Article  CAS  Google Scholar 

  18. Manasa G, Mascarenhas RJ, Basavaraja BM (2019) Sensitively-selective determination of Propyl Paraben preservative based on synergistic effects of polyaniline-zinc-oxide nano-composite incorporated into graphite paste electrode. Colloid Surface B 184:110529

    Article  CAS  Google Scholar 

  19. Jiang B, Pang X, Li B, Lin Z (2015) Organic-inorganic nanocomposites via placing monodisperse ferroelectric nanocrystals in direct and permanent contact with ferroelectric polymers. J Am Chem Soc 137:11760–11767

    Article  CAS  Google Scholar 

  20. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Mater 3:3654–3674

    Article  CAS  Google Scholar 

  21. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  22. Moučka R, Kazantseva N, Sapurina I (2018) Electric properties of MnZn ferrite/polyaniline composites: the implication of polyaniline morphology. J Mater Sci 53:1995–2004. https://doi.org/10.1007/s10853-017-1620-6

    Article  CAS  Google Scholar 

  23. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  CAS  Google Scholar 

  24. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523

    Article  CAS  Google Scholar 

  25. Salehi MH, Golbaten-Mofrad H, Jafari SH, Goodarzi V, Entezari M, Hashemi M, Zamanlui S (2021) Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. Int J Biol Macromol 173:467–480

    Article  CAS  Google Scholar 

  26. Pei L, Ma Y, Qiu F, Lin F, Fan C, Ling X (2020) Synthesis of polyaniline/graphene nanocomposites and electrochemical sensing performance for formaldehyde. Curr Anal Chem 16:493–498

    Article  CAS  Google Scholar 

  27. Mahmoud ME, Amira MF, Seleim SM, Abouelanwar ME (2021) Behavior of surface coated zirconium silicate-nanopolyaniline with nano zerovalent copper (ZrSiO4@NPANI@nZVCu) toward catalytic reduction of nitroanilines. Mater Chem Phys 258:123890

    Article  CAS  Google Scholar 

  28. Zhang Y, Ma Y, Wei T, Lin FF, Qiu FL, Pei LZ (2018) Polyaniline/zinc bismuthate nanocomposites for the enhanced electrochemical performance of the determination of L-Cysteine. Measurement 128:55–62

    Article  Google Scholar 

  29. Pippara RK, Chauhan PS, Yadav A, Kishnani V, Gupta A (2021) Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites. Micro Nano Eng 12:100086

    Article  CAS  Google Scholar 

  30. Fan Z, Sun L, Wu S, Liu C, Wang M, Xu J, Tong Z (2019) Preparation of manganese porphyrin/niobium tungstate nanocomposites for enhanced electrochemical detection of nitrite. J Mater Sci 54:10204–10216. https://doi.org/10.1007/s10853-019-03526-4

    Article  CAS  Google Scholar 

  31. Ma J, Zhang Z, Yang M, Wu Y, Feng X, Liu L, Tong Z (2016) Intercalated methylene blue between calcium niobate nanosheets by ESD technique for electrocatalytic oxidation of ascorbic acid. Micropor Mesopor Mat 22:123–127

    Article  CAS  Google Scholar 

  32. Zhang X, Liu L, Ma J, Yang X, Xu X, Tong Z (2013) A novel metalloporphyrin intercalated layered niobate as an electrode modified material for detection of hydrogen peroxide. Mater Lett 95:21–24

    Article  CAS  Google Scholar 

  33. Lee YR, Kim IY, Kim TW, Lee JM, Hwang SJ (2012) Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide. Chem Eur J 18:2263–2271

    Article  CAS  Google Scholar 

  34. Kawaguchi T, Horigane K, Itoh Y, Kobayashi K, Horie R, Kambe T, Akimitsu J (2018) Crystal structure and superconducting properties of KSr2Nb3O10. Physica B 536:830–832

    Article  CAS  Google Scholar 

  35. Lee WH, Im M, Kweon SH, Woo JU, Nahm S, Choi JW, Hwang SJ (2017) Synthesis of Sr2Nb3O10 nanosheets and their application for growth of thin film using an electrophoretic method. J Am Ceram Soc 100:1098–1107

    Article  CAS  Google Scholar 

  36. Yoshimoto S, Ohashi F, Kameyama T (2005) Characterization and thermal degradation studies on polyaniline-intercalated montmorillonite nanocomposites prepared by a solvent-free mechanochemical route. J Polym Sci Pol Phys 43:2705–2714

    Article  CAS  Google Scholar 

  37. Ma J, Zhang X, Yan C, Tong Z, Inoue H (2008) Synthesis and characterization of a polyaniline/HTiNbO5 lamellar hybrid nanocomposite. J Mater Sci 43:5534–5539. https://doi.org/10.1007/s10853-008-2837-1

    Article  CAS  Google Scholar 

  38. Ma J, Yang M, Chen Y, Liu L, Zhang X, Wang M, Zhang D, Tong Z (2015) Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater Lett 150:122–125. https://doi.org/10.1016/j.matlet.2015.03.039

    Article  CAS  Google Scholar 

  39. Graf D, Queralto A, Lepcha A, Appel L, Frank M, Mathur S (2020) Electrospun SrNb2O6 photoanodes from single-source precursors for photoelectrochemical water splitting. Sol Energ Mat Sol C 210:110485

    Article  CAS  Google Scholar 

  40. Ding Y, Luo D, Huang Y, Rong B, Chen X, Wei Y, Wu J (2021) Microwave-mechanochemistry-assisted synthesis of Z-scheme HSr2Nb3O10/WO3 heterojunctions for improved simulated sunlight driven photocatalytic activity. J Environ Chem Eng 9:104624

    Article  CAS  Google Scholar 

  41. Patel BR, Noroozifar M, Kerman K (2020) Prussian blue-doped nanosized polyaniline for electrochemical detection of benzenediol isomers. Anal Bioanal Chem 412:1769–1784

    Article  CAS  Google Scholar 

  42. Pan B, Xu J, Zhang X, Li J, Wang M, Ma J, Tong Z (2018) Electrostatic self-assembly behavior of exfoliated Sr2Nb3O10- nanosheets and cobalt porphyrins: exploration of non-noble electro-catalysts towards hydrazine hydrate oxidation. J Mater Sci 53:6494–6504. https://doi.org/10.1007/s10853-018-2033-x

    Article  CAS  Google Scholar 

  43. Yan X, Chen J, Yang J, Xue Q, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    Article  CAS  Google Scholar 

  44. Lee D, Char K (2002) Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites. Polym Degrad Stabil 75:555–560

    Article  CAS  Google Scholar 

  45. Rao H, Liu Y, Zhong J, Zhang Z, Zhao X, Liu X, Wang Y (2017) Gold nanoparticle/chitosan@N S co-doped multiwalled carbon nanotubes sensor: fabrication, characterization, and electrochemical detection of catechol and nitrite. ACS Sustain Chem Eng 5:10926–10939

    Article  CAS  Google Scholar 

  46. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  47. Yuan X, Yuan D, Zeng F, Zou W, Tzorbatzoglou F, Tsiakaras P, Wang Y (2013) Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol. Appl Catal B Environ 129:367–374

    Article  CAS  Google Scholar 

  48. Feng X, Shi Y, Hu Z (2011) Polyaniline/polysulfone composite film electrode for simultaneous determination of hydroquinone and catechol. Mater Chem Phys 131:72–76

    Article  CAS  Google Scholar 

  49. Sudhakara SM, Devendrachari MC, Kotresh HMN, Khan F (2021) Silver nanoparticles decorated phthalocyanine doped polyaniline for the simultaneous electrochemical detection of hydroquinone and catechol. J Electroanal Chem 884:115071

    Article  CAS  Google Scholar 

  50. Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46

    Article  CAS  Google Scholar 

  51. Sadeghi S, Fooladi E, Malekaneh M (2015) A new amperometric biosensor based on Fe3O4/polyaniline/laccase/chitosan biocomposite-modified carbon paste electrode for determination of catechol in tea leaves. Appl Biochem Biotech 175:1603–1616

    Article  CAS  Google Scholar 

  52. Song Y, Zhao M, Wang X, Qu H, Liu Y, Chen S (2019) Simultaneous electrochemical determination of catechol and hydroquinone in seawater using Co3O4/MWCNTs/GCE. Mater Chem Phys 234:217–223

    Article  CAS  Google Scholar 

  53. Guo HL, Peng S, Xu JH, Zhao YQ, Kang X (2014) Highly stable pyridinic nitrogen doped graphene modified electrode in simultaneous determination of hydroquinone and catechol. Sensor Actuat B Chem 193:623–629

    Article  CAS  Google Scholar 

  54. Chen Y, Liu X, Zhang S, Yang L, Liu M, Zhang Y, Yao S (2017) Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 231:677–685

    Article  CAS  Google Scholar 

  55. Huang YH, Chen JH, Ling LJ, Su ZB, Sun X, Hu SR, San He Y (2015) Simultaneous electrochemical detection of catechol and hydroquinone based on gold nanoparticles@ carbon nanocages modified electrode. Analyst 140:7939–7947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 21776298, 22178376), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant 2021-K01) and the National Key Research and Development Program of China (Grant 2018YFB0604602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Yong Wei or Zhi-Wei Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, ZC., Wei, XY., Tong, ZW. et al. In situ polymerization synthesis of polyaniline/strontium niobate nanocomposite for highly sensitive electrochemical detection of catechol. J Mater Sci 57, 11523–11536 (2022). https://doi.org/10.1007/s10853-022-07319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07319-0

Navigation