Skip to main content

Advertisement

Log in

Macroporous polyvinyl alcohol-tannic acid hydrogel with high strength and toughness for cartilage replacement

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) hydrogels as alternative materials for biomedical applications have attracted extensive attention. However, the development of bioactive hydrogel with macroporous structure and good mechanical performance is still an enormous challenge. In this study, a PVA-tannic acid (TA) macroporous hydrogel is presented by cryogelation method. The macropores are obtained by the large-sized ice crystals generated in situ. The pore size of the obtained hydrogel could reach 150–250 μm and the porosity is over 85%. The macroporous PVA-TA hydrogel exhibit notable compressive modulus (0.54 MPa), tensile modulus (0.70 MPa), compressive toughness (1.14 MJ/m3) and tensile toughness (1.49 MJ/m3). In addition, the hydrogel has remarkable self-recovery and energy dissipation ability. From the in vitro cell culture, it is observed that TA has strongly enhanced the bioadhesion and bioactivity of hydrogel, implying the potential application of PVA-TA hydrogel in cartilage replacement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wei W, Ma Y, Yao X et al (2021) Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 6:998–1011. https://doi.org/10.1016/j.bioactmat.2020.09.030

    Article  CAS  Google Scholar 

  2. Almarza AJ, Athanasiou KA (2004) Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng 32:2–17. https://doi.org/10.1023/B:ABME.0000007786.37957.65

    Article  Google Scholar 

  3. Wei W, Dai H (2021) Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioactive Materials 6:4830–4855. https://doi.org/10.1016/j.bioactmat.2021.05.011

    Article  CAS  Google Scholar 

  4. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100B:1451–1457. https://doi.org/10.1002/jbm.b.32694

    Article  CAS  Google Scholar 

  5. Sardinha VM, Lima LL, Belangero WD, Zavaglia CA, Bavaresco VP, Gomes JR (2013) Tribological characterization of polyvinyl alcohol hydrogel as substitute of articular cartilage. Wear 301:218–225. https://doi.org/10.1016/j.wear.2012.11.054

    Article  CAS  Google Scholar 

  6. Oliveira AS, Seidi O, Ribeiro N, Colaco R, Serro AP (2019) Tribomechanical comparison between PVA hydrogels obtained using different processing conditions and human cartilage. Materials (Basel). https://doi.org/10.3390/ma12203413

    Article  Google Scholar 

  7. Zhang Q, Lu H, Kawazoe N, Chen G (2014) Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater 10:2005–2013. https://doi.org/10.1016/j.actbio.2013.12.042

    Article  CAS  Google Scholar 

  8. Timothy KL, Henderson MA, Haylock DN, McLean KM, O’Connor AJ (2013) Cryogels for biomedical applications. J Mater Chem B 1:2682–2695. https://doi.org/10.1039/c3tb20280a

    Article  CAS  Google Scholar 

  9. Congdon T, Notman R, Gibson MI (2013) Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 14:1578–1586. https://doi.org/10.1021/bm400217j

    Article  CAS  Google Scholar 

  10. Wang HY, Inada T, Funakoshi K, Lu SS (2009) Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution. Cryobiology 59:83–89. https://doi.org/10.1016/j.cryobiol.2009.04.013

    Article  CAS  Google Scholar 

  11. Gutiérrez MC, García-Carvajal ZY, Jobbágy M et al (2007) Poly(vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Adv Func Mater 17:3505–3513. https://doi.org/10.1002/adfm.200700093

    Article  CAS  Google Scholar 

  12. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233. https://doi.org/10.1016/j.jmbbm.2011.04.005

    Article  CAS  Google Scholar 

  13. Hou R, Nie L, Du G, Xiong X, Fu J (2015) Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Coll Surf B Biointerf 132:146–154. https://doi.org/10.1016/j.colsurfb.2015.05.008

    Article  CAS  Google Scholar 

  14. Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L (2018) Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr Polym 186:377–383. https://doi.org/10.1016/j.carbpol.2018.01.061

    Article  CAS  Google Scholar 

  15. Qi X, Hu X, Wei W et al (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 118:60–69. https://doi.org/10.1016/j.carbpol.2014.11.021

    Article  CAS  Google Scholar 

  16. Li H, C-w Wu, Wang S, Zhang W (2020) Mechanically strong poly (vinyl alcohol) hydrogel with macropores and high porosity. Mater Lett 266:127504. https://doi.org/10.1016/j.matlet.2020.127504

    Article  CAS  Google Scholar 

  17. Ma S, Lee H, Liang Y, Zhou F (2016) Astringent mouthfeel as a consequence of lubrication failure. Angew Chem Int Ed 55:5887–5891. https://doi.org/10.1002/anie.201601667

    Article  CAS  Google Scholar 

  18. Yang S, Zhang Y, Wang T, Sun W, Tong Z (2020) Ultrafast and programmable shape memory hydrogel of gelatin soaked in tannic acid solution. ACS Appl Mater Interf 12:46701–46701. https://doi.org/10.1021/acsami.0c13531

    Article  CAS  Google Scholar 

  19. Fan H, Wang J, Jin Z (2018) Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer-tannic acid multiple hydrogen bonds. Macromolecules 51:1696–1705. https://doi.org/10.1021/acs.macromol.7b02653

    Article  CAS  Google Scholar 

  20. Chang M, Liu X, Wang X, Peng F, Ren J (2021) Mussel-inspired adhesive hydrogels based on biomass-derived xylan and tannic acid cross-linked with acrylic acid with antioxidant and antibacterial properties. J Mater Sci 56:14729–14740. https://doi.org/10.1007/s10853-021-06228-y

    Article  CAS  Google Scholar 

  21. Zhang R, Ma PX (1999) Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering i preparation and morphology. J Biomed Mater Res 44(4):446–455. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4%3c446::AID-JBM11%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  22. Han G, Shao H, Zhu X et al (2012) The protective effect of xanthan gum on interleukin-1beta induced rabbit chondrocytes. Carbohydr Polym 89:870–875. https://doi.org/10.1016/j.carbpol.2012.04.023

    Article  CAS  Google Scholar 

  23. Bai Z, Wang T, Zheng X, Huang Y, Chen Y, Dan W (2020) High strength and bioactivity polyvinyl alcohol/collagen composite hydrogel with tannic acid as cross-linker. Polym Eng Sci 61:278–287. https://doi.org/10.1002/pen.25574

    Article  CAS  Google Scholar 

  24. Dai H, Huang Y, Huang H (2018) Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanocrystals. Cellulose 25:4623–4637. https://doi.org/10.1007/s10570-018-1873-5

    Article  CAS  Google Scholar 

  25. Pretsch E, Buehlmann P, Affolter C, Pretsch E, Bhuhlmann P, Affolter C (2000) Structure determination of organic compounds. Springer. https://doi.org/10.1007/978-3-662-62439-5

    Article  Google Scholar 

  26. Zhang W, Dehghani-Sanij AA, Blackburn RS (2008) IR study on hydrogen bonding in epoxy resin–silica nanocomposites. Prog Nat Sci 18:801–805. https://doi.org/10.1016/j.pnsc.2008.01.024

    Article  CAS  Google Scholar 

  27. Peng M, Xiao G, Tang X, Zhou Y (2014) Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 47:8411–8419. https://doi.org/10.1021/ma501590x

    Article  CAS  Google Scholar 

  28. Wang F, Wen Y, Bai T (2016) The composite hydrogels of polyvinyl alcohol-gellan gum-Ca(2+) with improved network structure and mechanical property. Mater Sci Eng C Mater Biol Appl 69:268–275. https://doi.org/10.1016/j.msec.2016.06.084

    Article  CAS  Google Scholar 

  29. Heneghan AF, Haymet ADJ (2003) Liquid-to-crystal heterogeneous nucleation: bubble accelerated nucleation of pure supercooled water. Chem Phys Lett 368:177–182. https://doi.org/10.1016/s0009-2614(02)01835-3

    Article  CAS  Google Scholar 

  30. Milner PE, Parkes M, Puetzer JL et al (2018) A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater 65:102–111. https://doi.org/10.1016/j.actbio.2017.11.002

    Article  CAS  Google Scholar 

  31. Zhang S, Li Y, Zhang H et al (2021) Bioinspired conductive hydrogel with ultrahigh toughness and stable antiswelling properties for articular cartilage replacement. ACS Mater Lett 3(6):807–814. https://doi.org/10.1021/acsmaterialslett.1c00203

    Article  CAS  Google Scholar 

  32. Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym 91:7–13. https://doi.org/10.1016/j.carbpol.2012.07.070

    Article  CAS  Google Scholar 

  33. Fan X, Wang S, Fang Y et al (2020) Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Mater Sci Eng C Mater Biol Appl 109:110649. https://doi.org/10.1016/j.msec.2020.110649

    Article  CAS  Google Scholar 

  34. Gan D, Wang Z, Xie C et al (2019) Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv Healthc Mater 8:e1901103. https://doi.org/10.1002/adhm.201901103

    Article  CAS  Google Scholar 

  35. Chang KH, Liao HT, Chen JP (2013) Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies. Acta Biomater 9:9012–9026. https://doi.org/10.1016/j.actbio.2013.06.046

    Article  CAS  Google Scholar 

  36. Sedlačík T, Nonoyama T, Guo H et al (2020) Preparation of tough double- and triple-network supermacroporous hydrogels through repeated cryogelation. Chem Mater 32:8576–8586. https://doi.org/10.1021/acs.chemmater.0c02911

    Article  CAS  Google Scholar 

  37. Yue Y, Wang X, Wu Q, Han J, Jiang J (2020) Highly recyclable and super-tough hydrogel mediated by dual-functional TiO2 nanoparticles toward efficient photodegradation of organic water pollutants. J Coll Interf Sci 564:99–112. https://doi.org/10.1016/j.jcis.2019.12.069

    Article  CAS  Google Scholar 

  38. Su T, Liu Y, He H et al (2016) Strong bioinspired polymer hydrogel with tunable stiffness and toughness for mimicking the extracellular matrix. ACS Macro Lett 5:1217–1221. https://doi.org/10.1021/acsmacrolett.6b00702

    Article  CAS  Google Scholar 

  39. Danso EK, Honkanen JT, Saarakkala S, Korhonen RK (2014) Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus. J Biomech 47:200–206. https://doi.org/10.1016/j.jbiomech.2013.09.015

    Article  CAS  Google Scholar 

  40. Zhang X, Li Z, Yang P et al (2021) Polyphenol scaffolds in tissue engineering. Mater Horiz 8:145–167. https://doi.org/10.1039/d0mh01317j

    Article  CAS  Google Scholar 

  41. Liskova J, Douglas TE, Beranova J et al (2015) Chitosan hydrogels enriched with polyphenols: antibacterial activity, cell adhesion and growth and mineralization. Carbohydr polym 129:135–142. https://doi.org/10.1016/j.carbpol.2015.04.043

    Article  CAS  Google Scholar 

  42. Natarajan V, Krithica N, Madhan B, Sehgal PK (2013) Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing. J Biomed Mater Res B Appl Biomater 101:560–567. https://doi.org/10.1002/jbm.b.32856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Project of China (2018YFA0704103, 2018YFA0704104), National Natural Science Foundation China (11772086, U1908233), and Fundamental Research Funds for the Central Universities (DUT21TD105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, J., Li, T. et al. Macroporous polyvinyl alcohol-tannic acid hydrogel with high strength and toughness for cartilage replacement. J Mater Sci 57, 8262–8275 (2022). https://doi.org/10.1007/s10853-022-07209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07209-5

Navigation