Skip to main content
Log in

Insights on boron impact on structural characteristics in epitaxially grown BGaN

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

This article has been updated

Abstract

It is shown that MOCVD growth allows to obtain BGaN epitaxial layers at growth temperature (Tgr) between 840 and 1090 °C. It is found that morphology of the epitaxial layers and amount of B replacing Ga strongly dependent on growth temperature. The SIMS determined that the total amount of B was constant for all growth temperatures. On the other hand, the X-ray measurements shown that amount of boron incorporated into gallium sites decreased from 2.5 to 0.73%, for Tgr changed from 840 to 1090 °C, respectively. That indicated that increase of growth temperature leads to transfer of B atoms from Ga substitutional sites to the interstitial positions. It was also shown that the c(x) lattice parameter for ternary BGaN alloys is well described by the standard interpolation formula. On the other hand, energy shifts observed in photoluminescence suggest that the layers are under dilatation strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 03 April 2022

    This article was revised to correct a spelling error in the first author affiliation.

References

  1. Nakamura S, Pearton S, Fasol G (2000) The blue laser diode. Springer, Berlin

    Book  Google Scholar 

  2. Ougazzaden A, Gautier S, Moudakir T et al (2008) Bandgap bowing in BGaN thin films. Appl Phys Lett 93:083118. https://doi.org/10.1063/1.2977588

    Article  CAS  Google Scholar 

  3. Park SH, Ahn D (2017) Dip-shaped AlGaN/AlN light-emitting diodes with delta-layer containing boron. IEEE Photonics Technol Lett 29:1042–1045. https://doi.org/10.1109/LPT.2017.2702610

    Article  CAS  Google Scholar 

  4. Lymperakis L (2018) Ab-initio study of boron incorporation and compositional limits at GaN and AlN (0001) surfaces. AIP Adv 8:65301. https://doi.org/10.1063/1.5029339

    Article  CAS  Google Scholar 

  5. Shen J-X, Turiansky ME, Wickramaratne D, Van de Walle CG (2021) Thermodynamics of boron incorporation in BGaN. Phys Rev Mater 5:L030401. https://doi.org/10.1103/physrevmaterials.5.l030401

    Article  CAS  Google Scholar 

  6. Kurimoto M, Takano T, Yamamoto J et al (2000) Growth of BGaN/AlGaN multi-quantum-well structure by metalorganic vapor phase epitaxy. J Cryst Growth 221:378–381. https://doi.org/10.1016/S0022-0248(00)00717-X

    Article  CAS  Google Scholar 

  7. Honda T, Kurimoto M, Shibata M, Kawanishi H (2000) Excitonic emission of BGaN grown on (0001) 6H–SiC by metal-organic vapor-phase epitaxy. J Lumin 87–89:1274–1276. https://doi.org/10.1016/S0022-2313(99)00565-7

    Article  Google Scholar 

  8. Honda T, Shibata M, Kurimoto M et al (2000) Band-gap energy and effective mass of BGaN. Jpn J Appl Phys Part 1 39:2389–2393. https://doi.org/10.1143/jjap.39.2389

    Article  CAS  Google Scholar 

  9. Baghdadli T, Hamady SOS, Gautier S et al (2009) Electrical and structural characterizations of BGaN thin films grown by metal-organic vapor-phase epitaxy. Phys Status Solidi 6:S1029–S1032. https://doi.org/10.1002/pssc.200880896

    Article  Google Scholar 

  10. Polyakov AY, Shin M, Skowronski M et al (1997) Growth of GaBN ternary solutions by organometallic vapor phase epitaxy. J Electron Mater 26:237–242. https://doi.org/10.1007/s11664-997-0157-x

    Article  CAS  Google Scholar 

  11. Ebara K, Mochizuki K, Inoue Y et al (2019) Impact of growth temperature on the structural properties of BGaN films grown by metal-organic vapor phase epitaxy using trimethylboron. Jpn J Appl Phys 58:SC1042. https://doi.org/10.7567/1347-4065/ab1395

    Article  CAS  Google Scholar 

  12. Kadys A, Mickevičius J, Malinauskas T et al (2015) Optical and structural properties of BGaN layers grown on different substrates. J Phys D Appl Phys 48:465307. https://doi.org/10.1088/0022-3727/48/46/465307

    Article  CAS  Google Scholar 

  13. Williamson TL, Weisse-Bernstein NR, Hoffbauer MA (2014) Growth of ternary wurtzite BAlN and BGaN by ENABLE-MBE. Phys Status Solidi Curr Top Solid State Phys 11:462–465. https://doi.org/10.1002/pssc.201300741

    Article  CAS  Google Scholar 

  14. Gupta VK, Wamsley CC, Koch MW, Wicks GW (1999) Molecular beam epitaxy growth of boron-containing nitrides. J Vac Sci Technol B Microelectron Nanom Struct Process Meas Phenom 17:1246–1248. https://doi.org/10.1116/1.590731

    Article  CAS  Google Scholar 

  15. Wei CH, Xie ZY, Edgar JH et al (2000) MOCVD growth of GaBN on 6H-SiC (0001) substrates. J Electron Mater 29:452–456. https://doi.org/10.1007/s11664-000-0160-y

    Article  CAS  Google Scholar 

  16. Mickevicius J, Andrulevicius M, Ligor O et al (2019) Type-II band alignment of low-boron- content BGaN/GaN heterostructures. J Phys D: Appl Phys 52:325105. https://doi.org/10.1088/1361-6463/ab2337

    Article  CAS  Google Scholar 

  17. Vezin V, Yatagai S, Shiraki H, Satoshi U (1997) Growth of Ga1-xBxN by Molecular Beam Epitaxy. Jpn J Appl Phys 36:L1483–L1485. https://doi.org/10.1143/JJAP.36.L1483

    Article  CAS  Google Scholar 

  18. Harrison WA (2004) Elementary electronic structure, Revised. World Scientific, Singapore

    Book  Google Scholar 

  19. Teles LK, Scolfaro LMR, Leite JR et al (2002) Spinodal decomposition in BxGa1-xN and BxAl1-xN alloys. Appl Phys Lett 80:1177–1179. https://doi.org/10.1063/1.1450261

    Article  CAS  Google Scholar 

  20. Malinauskas T, Kadys A, Stanionyte S et al (2015) Growth of BGaN epitaxial layers using close-coupled showerhead MOCVD. Phys Status Solidi Basic Res 252:1138–1141. https://doi.org/10.1002/pssb.201451560

    Article  CAS  Google Scholar 

  21. Teles LK, Furthmüller J, Scolfaro LMR et al (2002) Phase separation and gap bowing in zinc-blende InGaN, InAlN, BGaN, and BAlN alloy layers. Phys E Low-Dimens Syst Nanostruct 13:1086–1089. https://doi.org/10.1016/S1386-9477(02)00309-0

    Article  CAS  Google Scholar 

  22. Orsal G, Maloufi N, Gautier S et al (2008) Effect of boron incorporation on growth behavior of BGaN/GaN by MOVPE. J Cryst Growth 310:5058–5062. https://doi.org/10.1016/j.jcrysgro.2008.08.024

    Article  CAS  Google Scholar 

  23. Gunning BP, Moseley MW, Koleske DD et al (2017) Phase degradation in BxGa1−xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth 464:190–196. https://doi.org/10.1016/j.jcrysgro.2016.10.054

    Article  CAS  Google Scholar 

  24. Jurkevičius J, Mickevičius J, Kadys A et al (2016) Photoluminescence efficiency of BGaN epitaxial layers with high boron content. Phys B Condens Matter 492:23–26. https://doi.org/10.1016/j.physb.2016.03.033

    Article  CAS  Google Scholar 

  25. Gautier S, Patriarche G, Moudakir T et al (2011) Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth 315:288–291. https://doi.org/10.1016/j.jcrysgro.2010.08.042

    Article  CAS  Google Scholar 

  26. Ueyama K, Mimura H, Inoue Y et al (2016) Effect of substrate offcut angle on BGaN epitaxial growth. Jpn J Appl Phys 55:05FD05. https://doi.org/10.7567/JJAP.55.05FD05

    Article  Google Scholar 

  27. Gautier S, Abid M, Moudakir T et al (2011) Application of dilute boron B(Al,In,Ga)N alloys for UV light sources. In: Proceedings of SPIE, Oxide-based Materials and Devices II, vol 7940, p 79400X. https://doi.org/10.1117/12.884524

  28. Ougazzaden A, Gautier S, Sartel C et al (2007) BGaN materials on GaN/sapphire substrate by MOVPE using N2 carrier gas. J Cryst Growth 298:316–319. https://doi.org/10.1016/j.jcrysgro.2006.10.072

    Article  CAS  Google Scholar 

  29. Zdanowicz E, Iida D, Pawlaczyk L et al (2020) Boron influence on bandgap and photoluminescence in BGaN grown on AlN. J App Phys 127:165703. https://doi.org/10.1063/1.5140413

    Article  CAS  Google Scholar 

  30. Durbin SM, Follis GC (1995) Darwin theory of heterostructure diffraction. Phys Rev B Condens Matter 51:10127–10133. https://doi.org/10.1103/physrevb.51.10127

    Article  CAS  Google Scholar 

  31. Gaca J, Wójcik M, Jasik A et al (2008) Effects of composition grading at heterointefaces and layer thickness variations on Bragg mirror quality. Opto-Electron Rev 16:12–17. https://doi.org/10.2478/s11772-007-0023-7

    Article  CAS  Google Scholar 

  32. Gaca J, Wójcik M, Bugajski M, Kosiel K (2011) The determination of the chemical composition profile of the GaAs/AlGaAs heterostructures designed for quantum cascade lasers by means of synchrotron radiation. Radiat Phys Chem 80:1112–1118. https://doi.org/10.1016/j.radphyschem.2011.03.007

    Article  CAS  Google Scholar 

  33. Cramer RC, Bonef B, English J et al (2017) Growth of coherent BGaN films using BBr 3 gas as a boron source in plasma assisted molecular beam epitaxy. J Vac Sci Technol A 35:041509. https://doi.org/10.1116/1.4986185

    Article  CAS  Google Scholar 

  34. Bonef B, Cramer R, Speck JS (2017) Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography. J Appl Phys 121:225701. https://doi.org/10.1063/1.4984087

    Article  CAS  Google Scholar 

  35. Davydov YV, Goncharuk IN, Smirnov AN et al (2002) Composition dependence of optical phonon energies and Raman line broadening in hexagonal (formula presented) alloys. Phys Rev B 65:125203. https://doi.org/10.1103/PhysRevB.65.125203

    Article  CAS  Google Scholar 

  36. Azuhata T, Sota T, Suzuki K, Nakamura S (1995) Polarized Raman spectra in GaN. J Phys Condens Matter 7:L129–L133. https://doi.org/10.1088/0953-8984/7/10/002

    Article  CAS  Google Scholar 

  37. Cuscó R, Alarcón-Lladó E, Ibáñez J et al (2008) Phonons in BxGa1-xN/GaN epilayers studied by means of UV Raman scattering. Phys Status Solidi B 245:731–734. https://doi.org/10.1002/pssb.200743398

    Article  CAS  Google Scholar 

  38. Abstreiter G, Bauser E, Fischer A, Ploog K (1978) Raman spectroscopy-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1xAs. Appl Phys 16:345–352. https://doi.org/10.1007/BF00885858

    Article  CAS  Google Scholar 

  39. Leszczynski M, Suski T, Perlin P, Teisseyre H, Grzegory I, Bockowski M, Jun J, Porowski S, Major J (1995) Lattice constants, thermal expansion and compressibility of gallium nitride. J Phys D 28:A149

    Article  CAS  Google Scholar 

  40. Kim C, Robinson IK, Myoung J, Shim K, Yoo M-C, Kim K (1996) Critical thickness of GaN thin films on sapphire (0001). Appl Phys Lett 69:2358

    Article  CAS  Google Scholar 

  41. Heying B, Wu XH, Keller S, Li Y, Kapolnek D, Keller BP, DenBaars SP, Speck JS (1996) Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films. Appl Phys Lett 68:643

    Article  CAS  Google Scholar 

  42. Kudrawiec R, Hommel D (2020) Bandgap engineering in III-nitrides with boron and group v elements: toward applications in ultraviolet emitters. Appl Phys Rev 7:041314. https://doi.org/10.1063/5.0025371

    Article  CAS  Google Scholar 

  43. Zhang M, Li X (2017) Structural and electronic properties of wurtzite BxAl1–xN from first-principles calculations. Phys Status Solidi B 254:1600749. https://doi.org/10.1002/pssb.201600749

    Article  CAS  Google Scholar 

  44. Alemu A, Gil B, Julier M, Nakamura S (1998) Optical properties of wurtzite GaN epilayers grown on A-plane sapphire. Phys Rev B 57:3761–3764. https://doi.org/10.1103/PhysRevB.57.3761

    Article  CAS  Google Scholar 

  45. Chichibu S, Azuhata T, Sota T et al (1997) Optical properties of tensile-strained wurtzite GaN epitaxial layers. Appl Phys Lett 70:2085–2087. https://doi.org/10.1063/1.118958

    Article  CAS  Google Scholar 

  46. Baranowski JM (1984) Bond lengths, force constants and local impurity distortions in semiconductors. J Phys C Solid State Phys 17:6287–6301. https://doi.org/10.1088/0022-3719/17/35/005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the Grant No. 4/Ł-IMIF/CŁ/2021 funded by The Łukasiewicz Centre. Authors of the paper would like to thank professor Krzysztof P. Korona for photoluminescence measurements and for helpful discussions. Also, authors would like to thank Jacek Nizel for performing an epitaxial growth. Karolina Pietak acknowledges financial support from the IDUB project (Scholarship Plus programme).

Funding

This study was funded by The Łukasiewicz Centre (Grant Number 4/Ł-IMIF/CŁ/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina B. Możdżyńska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Możdżyńska, E.B., Złotnik, S., Ciepielewski, P. et al. Insights on boron impact on structural characteristics in epitaxially grown BGaN. J Mater Sci 57, 7265–7275 (2022). https://doi.org/10.1007/s10853-022-07085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07085-z

Navigation