Skip to main content

Advertisement

Log in

Microstructure, mechanical properties, and cytotoxicity of low Young’s modulus Ti–Nb–Fe–Sn alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti–26Nb–2Fe–(0, 2, 4, 6, 8)Sn alloys were prepared by arc melting and subjected to homogenization, cold rolling, and solution treatment. The β phase stability of the alloys increased with the addition of Sn. Ti–26Nb–2Fe comprised ω + β phases, whereas a single β phase was detected in Ti–26Nb–2Fe–(2, 4, 6, 8)Sn. With an increase in Sn, the Young’s modulus first decreased from 83 GPa in Ti–26Nb–2Fe to 58 GPa in Ti–26Nb–2Fe–4Sn and increased to 63 GPa in Ti–26Nb–2Fe–8Sn. Sn suppressed twinning during tension. Although the work-hardening rate decreased with the decrease of twinning, Sn was beneficial for maintaining a low work-hardening rate and postponed necking. All the alloys exhibited remarkably high plasticity. A strong solid solution strengthening effect of Sn was not observed in the studied Ti–Nb–Fe–Sn alloys. Ti–26Nb–2Fe–4Sn with a good combination of high tensile strength (yield strength of 592 MPa and tensile strength of 622 MPa) and low Young’s modulus (58 GPa) exhibited significantly higher cell viability than that of the control group after a 7-day culturing, indicating that it is a suitable candidate for biomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Reports 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  2. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  Google Scholar 

  3. Helth A, Pilz S, Kirsten T, Giebeler L, Freudenberger J, Calin M, Eckert J, Gebert A (2017) Effect of thermomechanical processing on the mechanical biofunctionality of a low modulus Ti-40Nb alloy. J Mech Behav Biomed Mater 65:137–150. https://doi.org/10.1016/j.jmbbm.2016.08.017

    Article  CAS  Google Scholar 

  4. Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, Patoor E (2010) Mechanical properties of low modulus β titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater 3:565–753. https://doi.org/10.1016/j.jmbbm.2010.07.001

    Article  CAS  Google Scholar 

  5. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001

    Article  Google Scholar 

  6. Kafkas F, Ebel T (2014) Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding. J Alloys Compd 617:359–366. https://doi.org/10.1016/j.jallcom.2014.07.168

    Article  CAS  Google Scholar 

  7. Dimić I, Cvijović-Alagić I, Völker B, Hohenwarter A, Pippan R, Veljović D, Rakin M, Bugarski B (2016) Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion. Mater Des 91:340–347. https://doi.org/10.1016/j.matdes.2015.11.088

    Article  CAS  Google Scholar 

  8. Hsu HC, Hsu SK, Wu SC, Lee CJ, Ho WF (2010) Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys. Mater Charact 61:851–858. https://doi.org/10.1016/j.matchar.2010.05.003

    Article  CAS  Google Scholar 

  9. Silva HM, Schneider SG, Neto CM (2004) Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications. Mater Sci Eng C 24:679–682. https://doi.org/10.1016/j.msec.2004.08.051

    Article  CAS  Google Scholar 

  10. Cremasco A, Messias AD, Esposito AR, Duek EADR, Caram R (2011) Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C 31:833–839. https://doi.org/10.1016/j.msec.2010.12.013

    Article  CAS  Google Scholar 

  11. Li Q, Miao P, Li J et al (2019) Effect of Nb Content on Microstructures and mechanical properties of Ti–xNb–2Fe alloys. J Mater Eng Perform 28:5501–5508. https://doi.org/10.1007/s11665-019-04250-5

    Article  CAS  Google Scholar 

  12. Li Q, Ma G, Li J et al (2019) Development of low-Young’s modulus Ti–Nb-based alloys with Cr addition. J Mater Sci 54:8675–8683. https://doi.org/10.1007/s10853-019-03457-0

    Article  CAS  Google Scholar 

  13. Li Q, Niinomi M, Nakai M, Cui Z, Zhu S, Yang X (2012) Effect of Zr on super-elasticity and mechanical properties of Ti–24at% Nb– (0, 2, 4)at% Zr alloy subjected to aging treatment. Mater Sci Eng A 536:197–206. https://doi.org/10.1016/j.msea.2011.12.103

    Article  CAS  Google Scholar 

  14. Ozan S, Lin J, Li Y, Zhang Y, Munir K, Jiang H, Wen C (2018) Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy. J Mech Behav Biomed Mater 78:224–234. https://doi.org/10.1016/j.jmbbm.2017.11.025

    Article  CAS  Google Scholar 

  15. Bolmaro R, Parau AC, Pruna V et al (2019) Investigation of cast and annealed Ti–25Nb–10Zr alloy as material for orthopedic devices. J Mater Res Technol 8:3399–3414. https://doi.org/10.1016/j.jmrt.2019.06.006

    Article  CAS  Google Scholar 

  16. Wang X, Zhang L, Guo Z, Jiang Y, Tao X, Liu L (2016) Study of low-modulus biomedical β Ti–Nb–Zr alloys based on single-crystal elastic constants modeling. J Mech Behav Biomed Mater 62:310–318. https://doi.org/10.1016/j.jmbbm.2016.04.040

    Article  CAS  Google Scholar 

  17. Hao YL, Li SJ, Sun SY, Zheng CY, Yang R (2007) Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater 3:277–286. https://doi.org/10.1016/j.actbio.2006.11.002

    Article  CAS  Google Scholar 

  18. Narita K, Niinomi M, Nakai M, Hieda J, Oribe K (2012) Development of thermo-mechanical processing for fabricating highly durable β-type Ti–Nb–Ta–Zr rod for use in spinal fixation devices. J Mech Behav Biomed Mater 9:207–216. https://doi.org/10.1016/j.jmbbm.2012.01.011

    Article  CAS  Google Scholar 

  19. Plaine AH, Silva MRD, Bolfarini C (2019) Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications. J Mater Res Technol 8:3852–3858. https://doi.org/10.1016/j.jmrt.2019.06.047

    Article  CAS  Google Scholar 

  20. Bao Y, Zhang M, Liu Y, Yao J, Xiu Z, Xie M, Sun X (2014) High strength, low modulus and biocompatible porous Ti–Mo–Fe alloys. J Porous Mater 21:913–919. https://doi.org/10.1007/s10934-014-9837-0

    Article  Google Scholar 

  21. Cao GH, Peng YF, Liu N, Li X, Lei ZS, Ren ZM, Gerthsen D, Russell AM (2014) Formation of a bimodal structure in ultrafine Ti–Fe–Nb alloys with high-strength and enhanced ductility. Mater Sci Eng A 609:60–64. https://doi.org/10.1016/j.msea.2014.04.088

    Article  CAS  Google Scholar 

  22. Zhang BB, Wang BL, Wang YB, Li L, Zheng YF, Liu Y (2012) Development of Ti–Ag–Fe ternary titanium alloy for dental application. J Biomed Mater Res Part B Appl Biomater 100:185–196. https://doi.org/10.1002/jbm.b.31937

    Article  CAS  Google Scholar 

  23. Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M (1996) Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17:929–940. https://doi.org/10.1016/0142-9612(96)83289-3

    Article  CAS  Google Scholar 

  24. Hsu HC, Pan CH, Wu SC, Ho WF (2009) Structure and grindability of cast Ti–5Cr–xFe alloys. J Alloys Compd 474:578–583. https://doi.org/10.1016/j.jallcom.2008.07.003

    Article  CAS  Google Scholar 

  25. Hsu HC, Lin HC, Wu SC, Hong YS, Ho WF (2010) Microstructure and grindability of as-cast Ti–Sn alloys. J Mater Sci 45:1830–1836. https://doi.org/10.1007/s10853-009-4166-4

    Article  CAS  Google Scholar 

  26. Bahl S, Krishnamurthy AS, Suwas S, Chatterjee K (2017) Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable β Ti–Nb–Sn alloy for orthopedic applications. Mater Des 126:226–237. https://doi.org/10.1016/j.matdes.2017.04.014

    Article  CAS  Google Scholar 

  27. Hao YL, Niinomi M, Kuroda D, Fukunaga K, Zhou YL, Yang R, Suzuki A (2002) Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Metall Mater Trans A Phys Metall Mater Sci 33:3137–3144. https://doi.org/10.1007/s11661-002-0299-7

    Article  Google Scholar 

  28. Pavón LL, Kim HY, Hosoda H, Miyazaki S (2015) Effect of Nb content and heat treatment temperature on superelastic properties of Ti-24Zr-(8–12)Nb-2Sn alloys. Scr Mater 95:46–49. https://doi.org/10.1016/j.scriptamat.2014.09.029

    Article  CAS  Google Scholar 

  29. Ijaz MF, Kim HY, Hosoda H, Miyazaki S (2015) Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys. Mater Sci Eng C 48:11–20. https://doi.org/10.1016/j.msec.2014.11.010

    Article  CAS  Google Scholar 

  30. Li S, Hyunam TN (2019) Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications. Intermetallics 112:106545. https://doi.org/10.1016/j.intermet.2019.106545

    Article  CAS  Google Scholar 

  31. Inamura T, Fukui Y, Hosoda H, Wakashima K, Miyazaki S (2004) Relationship between texture and macroscopic transformation strain in severely cold-rolled Ti–Nb–Al superelastic alloy. Mater Trans 45:1083–1089. https://doi.org/10.2320/matertrans.45.1083

    Article  CAS  Google Scholar 

  32. Hosoda H, Kinoshita Y, Fukui Y, Inamura T, Wakashima K, Kim HY, Miyazaki S (2006) Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy. Mater Sci Eng A 438–440:870–874. https://doi.org/10.1016/j.msea.2006.02.151

    Article  CAS  Google Scholar 

  33. Inamura T, Shimizu R, Kim HY, Miyazaki S, Hosoda H (2016) Optimum rolling ratio for obtaining {001}<110 > recrystallization texture in Ti-Nb-Al biomedical shape memory alloy. Mater Sci Eng C 61:499–505. https://doi.org/10.1016/j.msec.2015.12.086

    Article  CAS  Google Scholar 

  34. Sun B, Meng XL, Gao ZY, Cai W, Zhao LC (2017) Effect of annealing temperature on shape memory effect of cold-rolled Ti-16 at.%Nb alloy. J Alloys Compd 715:16–20. https://doi.org/10.1016/j.jallcom.2017.04.275

    Article  CAS  Google Scholar 

  35. Hon YH, Wang JY, Pan YN (2003) Composition/phase structure and properties of titanium-niobium alloys. Mater Trans 44:2384–2390. https://doi.org/10.2320/matertrans.44.2384

    Article  CAS  Google Scholar 

  36. Kim HY, Satoru H, Il KJ, Hosoda H, Miyazaki S (2004) Mechanical properties and shape memory behavior of Ti–Nb alloys. Mater Trans 45:2443–2448. https://doi.org/10.2320/matertrans.45.2443

    Article  CAS  Google Scholar 

  37. Embury JD, Poole WJ, Lloyd DJ (2006) The work hardening of single phase and multi-phase aluminium alloys. Mater Sci Forum 519–521:71–78. https://doi.org/10.4028/www.scientific.net/msf.519-521.71

    Article  Google Scholar 

  38. Liu H, Niinomi M, Nakai M, Cong X, Cho K, Boehlert CJ, Khademi V (2017) Abnormal deformation behavior of oxygen-modified β-Type Ti–29Nb–13Ta–4.6Zr alloys for biomedical applications. Metall Mater Trans A Phys Metall Mater Sci 48:139–149. https://doi.org/10.1007/s11661-016-3836-5

    Article  CAS  Google Scholar 

  39. Ji X, Emura S, Min X, Tsuchiya K (2017) Strain-rate effect on work-hardening behavior in β-type Ti–10Mo–1Fe alloy with TWIP effect. Mater Sci Eng A 707:701–707. https://doi.org/10.1016/j.msea.2017.09.055

    Article  CAS  Google Scholar 

  40. Hao YL, Li SJ, Sun SY, Yang R (2006) Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A 441:112–118. https://doi.org/10.1016/j.msea.2006.09.051

    Article  CAS  Google Scholar 

  41. Zhang JY, Li JS, Chen Z, Meng QK, Sun F, Shen BL (2017) Microstructural evolution of a ductile metastable β titanium alloy with combined TRIP/TWIP effects. J Alloys Compd 699:775–782. https://doi.org/10.1016/j.jallcom.2016.12.394

    Article  CAS  Google Scholar 

  42. Zhao GH, Xu X, Dye D, Rivera-Díaz-del-Castillo PEJ (2020) Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater 183:155–164. https://doi.org/10.1016/j.actamat.2019.11.009

    Article  CAS  Google Scholar 

  43. Davidson JA, Mishra AK, Kovacs P, Poggie RA (1994) New surface-hardened, low-modulus, corrosion-resistant ti-13nb-13zr alloy for total hip arthroplasty. Biomed Mater Eng 4:231–243. https://doi.org/10.3233/BME-1994-4310

    Article  CAS  Google Scholar 

  44. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  45. Kim KM, Kim HY, Miyazaki S (2020) Effect of Zr content on phase stability, deformation behavior, and young’s modulus in Ti–Nb–Zr alloys. Materials (Basel) 13:476. https://doi.org/10.3390/ma13020476

    Article  CAS  Google Scholar 

  46. Li Q, Cheng C, Li J et al (2020) Low Young’s Modulus and High Strength Obtained in Ti–Nb–Zr–Cr Alloys by Optimizing Zr Content. J Mater Eng Perform 29:1–8. https://doi.org/10.1007/s11665-020-04826-6

    Article  CAS  Google Scholar 

  47. Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater 2011:1–10. https://doi.org/10.1155/2011/836587

    Article  CAS  Google Scholar 

  48. Zhang LC, Chen LY (2019) A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 21:1–29. https://doi.org/10.1002/adem.201801215

    Article  CAS  Google Scholar 

  49. Han L, Wang C, Li Z (2019) Mechanical, forming and biological properties of Ti–Fe–Zr–Y alloys prepared by 3D printing. J Mater Sci Technol 35:1323–1333. https://doi.org/10.1016/j.jmst.2019.01.003

    Article  Google Scholar 

  50. Torres-Sanchez C, Norrito M, Wang J, Bell H, Zani L, Conway PP (2020) Physico-chemical characterisation of Ti–Nb–Sn alloys surfaces and their osteogenic properties. Surf Coatings Technol 403:126439. https://doi.org/10.1016/j.surfcoat.2020.126439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of Shanghai, China (No. 15ZR1428400), Shanghai Engineering Research Center of High-Performance Medical Device Materials (No. 20DZ2255500), the project of Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development, Tohoku University, Japan sponsored by Ministry, Education, Culture, Sports, Science and Technology, Japan, and the Grant-in Aid for Scientific Research (C) (No. 20K05139) from JSPS (Japan Society for the Promotion of Science), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Contributions

QL: Investigation, Writing—original draft, Writing—review and editing, Funding acquisition. TL: Resources, Writing—original draft. JL: Investigation. CC: Resources. MN: Supervision, Funding acquisition. KY: Investigation. AC: Investigation, Supervision. TN: Supervision, Funding acquisition.

Corresponding authors

Correspondence to Qiang Li or Mitsuo Niinomi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, T., Li, J. et al. Microstructure, mechanical properties, and cytotoxicity of low Young’s modulus Ti–Nb–Fe–Sn alloys. J Mater Sci 57, 5634–5644 (2022). https://doi.org/10.1007/s10853-022-06984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06984-5

Navigation