Skip to main content
Log in

Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The bacterial infection has a significant impact on the human health. With the widespread use of antibiotics, the bacterial resistance has increased significantly, which necessitates the urgent identification of novel antibacterial materials. In this study, a hydrogel with an inherent antibacterial ability, self-assembled from a heterochiral peptide C16-DL4LR4, has been reported. The hydrogel demonstrated optimal rheological and injectable properties. It revealed a time-dependent antibacterial activity against Gram-positive Staphylococcus aureus and Bacillus subtilis as well as Gram-negative Escherichia coli and Shigella sonnei. After 5 h treatment with the hydrogel, the survival rate of S. aureus, B. subtilis, E. coli and Sh. sonnei bacteria was decreased to 5.9%, 0%, 5.3% and 11.09%, respectively. The chiral nanofibers with a diameter of 15–20 nm in the hydrogel were observed to be conducive to the aggregation of bacteria and destruction of the cell membrane to achieve the antibacterial effect. In addition, the in vitro analysis on the mouse embryonic fibroblasts confirmed the superior biocompatibility of the hydrogel. The results obtained in this study provide the basis for the development of the functional antibacterial hydrogels by the self-assembly of the heterochiral peptides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang F et al (2021) Fibrous aramid hydrogel supported antibacterial agents for accelerating bacterial-infected wound healing. Mater Sci Eng C 121:111833

    Article  CAS  Google Scholar 

  2. Zmejkoski DZ et al (2021) Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater Sci Eng C 122:111925

    Article  CAS  Google Scholar 

  3. Baral B, Mozafari MR (2020) Strategic moves of “superbugs” against available chemical scaffolds: signaling, regulation, and challenges. ACS Pharmacol Transl Sci 3(3):373–400

    Article  CAS  Google Scholar 

  4. Urzedo AL, Goncalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB (2020) Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater Sci Eng 6(4):2117–2134

    Article  CAS  Google Scholar 

  5. Somayajula D, Agarwal A, Sharma AK, Pall AE, Datta S, Ghosh G (2019) In situ synthesis of silver nanoparticles within hydrogel-conjugated membrane for enhanced antibacterial properties. ACS Appl Bio Mater 2(2):665–674

    Article  CAS  Google Scholar 

  6. Ahmed KBA, Raman T, Veerappan A (2016) Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater Sci Eng C 68:939–947

    Article  CAS  Google Scholar 

  7. Ma BD, Hu Y, X, et al (2018) Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications. ACS Appl Mater Inter 10(3):3002–3010

    Article  CAS  Google Scholar 

  8. Liu Y, Wen J, Gao Y, Li T, Wang H, Yan H, Niu B, Guo R (2018) Antibacterial graphene oxide coatings on polymer substrate. Appl Surf Sci 436:624–630

    Article  CAS  Google Scholar 

  9. Zou F, Zhou H, Jeong DY, Kwon J, Eom SU, Park TJ, Hong SW, Lee J (2017) Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets. ACS Appl Mater Inter 9(2):1343–1351

    Article  CAS  Google Scholar 

  10. Chong Y, Ge C, Fang G, Wu R, Zhang H, Chai Z, Chen C, Yin J-J (2017) Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ Sci Technol 51(17):10154–10161

    Article  CAS  Google Scholar 

  11. Zhou L, Chen F, Hou Z, Chen Y, Luo X (2021) Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial anti-cancer and wound healing properties. Chem Eng J 409:128224

    Article  CAS  Google Scholar 

  12. Xie Y-Y, Zhang Y-W, Liu X-Z, Ma X-F, Qin X-T, Jia S-R, Zhong C (2021) Aggregation-induced emission-active amino acid/berberine hydrogels with enhanced photodynamic antibacterial and anti-biofilm activity. Chem Eng J 413:127542

    Article  CAS  Google Scholar 

  13. Zhang L-J, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26(1):R14–R19

    Article  CAS  Google Scholar 

  14. Chen J, Gao M, Wang L, Li S, He J, Qin A, Ren L, Wang Y, Tang BZ (2018) Aggregation-induced emission probe for study of the bactericidal mechanism of antimicrobial peptides. ACS Appl Mater Inter 10(14):11436–11442

    Article  CAS  Google Scholar 

  15. Park S-C, Ko C, Hyeon H, Jang M-K, Lee D (2020) Imaging and targeted antibacterial therapy using chimeric antimicrobial peptide micelles. ACS Appl Mater Inter 12(49):54306–54315

    Article  CAS  Google Scholar 

  16. Zhao X-Q, Wahid F, Zhao X-J, Wang F-P, Wang T-F, Xie Y-Y, Jia S-R, Zhong C (2021) Fabrication of amino acid-based supramolecular hydrogel with silver ions for improved antibacterial properties. Mater Lett 300:130161

    Article  CAS  Google Scholar 

  17. Xie Y-Y, Zhang Y-W, Qin X-T, Liu L-P, Wahid F, Zhong C, Jia S-R (2020) Structure-dependent antibacterial activity of amino acid-based supramolecular hydrogels. Colloid Surface B 193:111099

    Article  CAS  Google Scholar 

  18. Mangelschots J, Bibian M, Gardiner J, Waddington L, Van Wanseele Y, Van Eeckhaut A, Acevedo MMD, Van Mele B, Madder A, Hoogenboom R, Ballet S (2016) Mixed α/β-peptides as a class of short amphipathic peptide hydrogelators with enhanced proteolytic stability. Biomacromol 17(2):437–445

    Article  CAS  Google Scholar 

  19. Chauhan N, Singh Y (2020) Self-assembled Fmoc-Arg-Phe-Phe peptide gels with highly potent bactericidal activities. ACS Biomater Sci Eng 6(10):5507–5518

    Article  CAS  Google Scholar 

  20. Chen T, Chen Y, Rehman HU, Chen Z, Yang Z, Wang M, Li H, Liu H (2018) Ultratough, Self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Inter 10(39):33523–33531

    Article  CAS  Google Scholar 

  21. Zhang L, Liu M, Zhang Y, Pei R (2020) Recent progress of highly adhesive hydrogels as wound dressings. Biomacromol 21(10):3966–3983

    Article  CAS  Google Scholar 

  22. Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B (2019) Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J 362:548–560

    Article  CAS  Google Scholar 

  23. Yan J, Ji Y, Huang M, Li T, Liu Y, Lü S, Liu M (2020) Nucleobase-inspired self-adhesive and inherently antibacterial hydrogel for wound dressing. ACS Mater Lett 2(11):1375–1380

    Article  CAS  Google Scholar 

  24. Li W, Wang B, Zhang M, Wu Z, Wei J, Jiang Y, Sheng N, Liang Q, Zhang D, Chen S (2020) All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing. Cellulose 27(5):2637–2650

    Article  CAS  Google Scholar 

  25. Liu S, Liu X, Ren Y, Wang P, Pu Y, Yang R, Wang X, Tan X, Ye Z, Maurizot V, Chi B (2020) Mussel-inspired dual-cross-linking hyaluronic acid/epsilon-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Inter 12(25):27876–27888

    Article  CAS  Google Scholar 

  26. Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, Zhang C, Li Y, Kong D, Wang W (2020) Synthetic polymeric antibacterial hydrogel for methicillin-resistant staphylococcus aureus-infected wound healing: nanoantimicrobial self-assembly, drug- and cytokine-free strategy. ACS Nano 14(10):12905–12917

    Article  CAS  Google Scholar 

  27. Xu L et al (2018) Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B 6(3):510–517

    Article  CAS  Google Scholar 

  28. Hui E, Gimeno KI, Guan G, Caliari SR (2019) Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromol 20(11):4126–4134

    Article  CAS  Google Scholar 

  29. Lei K, Sun Y, Sun C, Zhu D, Zheng Z, Wang X (2019) Fabrication of a controlled in situ forming polypeptide hydrogel with a good biological compatibility and shapeable property. ACS Appl Bio Mater 2(4):1751–1761

    Article  CAS  Google Scholar 

  30. Xing R et al (2017) Self-assembled injectable peptide hydrogels capable of triggering antitumor immune response. Biomacromol 18(11):3514–3523

    Article  CAS  Google Scholar 

  31. Veloso SRS et al (2021) Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Mater Sci Eng C 122:111869

    Article  CAS  Google Scholar 

  32. Xu W et al (2020) Peptide-assembled hydrogels for pH-controllable drug release. Colloid Surface B 185:110567

    Article  CAS  Google Scholar 

  33. Siddiqui Z, Sarkar B, Kim KK, Kumar A, Paul R, Mahajan A, Grasman JM, Yang J, Kumar VA (2021) Self-assembling peptide hydrogels facilitate vascularization in two-component scaffolds. Chem Eng J 422:130145

    Article  CAS  Google Scholar 

  34. Tayler IM, Stowers RS (2021) Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater 132:4–22

    Article  CAS  Google Scholar 

  35. Zhao C, Zhou L, Chiao M, Yang W (2020) Antibacterial hydrogel coating: strategies in surface chemistry. Adv Colloid Interfac 285:102280

    Article  CAS  Google Scholar 

  36. Chu B, He J-M, Liu L-L, Wu C-X, You L-L, Li X-L, Wang S, Chen C-S, Tu M (2021) Proangiogenic peptide nanofiber hydrogels for wound healing. ACS Biomater Sci Eng 7(3):1100–1110

    Article  CAS  Google Scholar 

  37. Hu X, Liao M, Gong H, Zhang L, Cox H, Waigh TA, Lu JR (2020) Recent advances in short peptide self-assembly: from rational design to novel applications. Curr Opin Colloid In 45:1–13

    Article  CAS  Google Scholar 

  38. Paduszynska MA, Maciejewska M, Neubauer D, Golacki K, Szymukowicz M, Bauer M, Kamysz W (2019) Influence of short cationic lipopeptides with fatty acids of different chain lengths on bacterial biofilms formed on polystyrene and hydrogel surfaces. Pharmaceutics 11(10):1–15

    Article  Google Scholar 

  39. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals Basel 6(12):1543–1575

    Article  Google Scholar 

  40. Melchionna KESASMM (2016) The unexpected advantages of using d-amino acids for peptide self- assembly into nanostructured hydrogels for medicine. Curr Top Med Chem 16(18):2009–2018

    Article  CAS  Google Scholar 

  41. Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S (2018) Chirality effects on peptide self-assembly unraveled from molecules to materials. Chemistry 4(8):1862–1876

    Article  CAS  Google Scholar 

  42. Cui H et al (2014) Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J Am Chem Soc 136(35):12461–12468

    Article  CAS  Google Scholar 

  43. Fa S, Zhao Y (2017) Peptide-binding nanoparticle materials with tailored recognition sites for basic peptides. J Mater Chem B 29(21):9284–9291

    Article  CAS  Google Scholar 

  44. Tiwari P et al (2021) Chiral orchestration: a tool for fishing out tripeptide-based mechanoresponsive supergelators possessing anti-inflammatory and antimicrobial properties. ACS Appl Bio Mater 4(5):4119–4130

    Article  CAS  Google Scholar 

  45. Restu WK et al (2020) Hydrogel formation by short D-peptide for cell-culture scaffolds. Mater Sci Eng C 111:110746

    Article  CAS  Google Scholar 

  46. An R, Zhang B, Han L, Wang X, Zhang Y, Shi L, Ran R (2019) Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. J Mater Sci 54(11):8515–8530

    Article  CAS  Google Scholar 

  47. Wu W, Wang L, Yuan J, Zhang Z, Zhang X, Dong S, Hao J (2020) Formation and degradation tracking of a composite hydrogel based on UCNPs@PDA. Macromolecules 53(7):2430–2440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Plan Project of Tianjin Municipal Education Commission (Nos. 2018KJ121).

Funding

Scientific Research Plan Project of Tianjin Municipal Education Commission,2018KJ121,Yan-Yan Xie

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4549 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YY., Wang, XQ., Sun, MY. et al. Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity. J Mater Sci 57, 5198–5209 (2022). https://doi.org/10.1007/s10853-022-06982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06982-7

Navigation