Skip to main content
Log in

Applicability of anti-corrosion for slippery liquid-infused porous surface using a double-layer ZnO nanostructure on Al foil

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Double-layer ZnO containing nanoflakes and nanorods was prepared on aluminum foil by a simple one-step hydrothermal method. The aluminum foil coated with double-layer ZnO could form a slippery liquid-infused porous surface (SLIPS) by immersing the sample in an ethanol solution containing stearic acid and then in Dupont Krytox 104. The as-prepared SLIPS had a larger contact angle and a smaller sliding angle. The electrochemical measurements showed that SLIPS presented higher and more durable corrosion resistance in comparison with the bare aluminum sample (BS) and the superhydrophobic surface (SHS). These results may enhance an alternative to design SLIPS for corrosion protection of metallic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Bonetti S, Spengler R, Petersen A, Aleixo LS, Merlo AA, Tamborim SM (2019) Surface-decorated silica with Schiff base as an anticorrosive coating for aluminum alloy 2024–T3. Appl Surf Sci 475:684–694

    Article  CAS  Google Scholar 

  2. Adole O, Barekar N, Anguilano L, Minton T, Novytskyi A, Mckay B (2019) Fibre/matrix intermetallic phase formation in novel aluminum-basalt composites. Mater Lett 239:128–131

    Article  CAS  Google Scholar 

  3. Song TT, Liu Q, Liu JY, Yang WL, Chen RR, Jing XY, Takahashi K, Wang J (2015) Fabrication of super slippery sheet-layered and porous anodic aluminum oxide surfaces and its anticorrosion property. Appl Surf Sci 355:495–501

    Article  CAS  Google Scholar 

  4. Cheng YY, Lu SX, Xu WG (2015) Controllable wettability of micro- and nano-dendritic structures formed on aluminum substrates. New J Chem 39:6602–6610

    Article  CAS  Google Scholar 

  5. Cheng Y, Lu SX, Xu WG, Boukherroub R, Szunerits S, Liang W (2017) Controlled fabrication of NiO/ZnO superhydrophobic surface on zinc substrate with corrosion and abrasion resistance. J Alloy Compd 723:225–236

    Article  CAS  Google Scholar 

  6. Saleema N, Sarkar DK, Paynter RW, Chen X-G (2010) Superhydrophobic aluminum alloy surfaces by a novel one-step process. ACS Appl Mater Interfaces 2:2500–2502

    Article  CAS  Google Scholar 

  7. Selim MS, Yang H, Wang FQ, Fatthallah NA, Huang Y, Kuga S (2019) Silicone/ZnO nanorod composite coating as a marine antifouling surface. Appl Surf Sci 466:40–50

    Article  CAS  Google Scholar 

  8. Bixler GD, Bhushan B (2013) Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5:7685–7710

    Article  CAS  Google Scholar 

  9. Dhar P, Khurana G, Raman HA, Jaiswal V (2019) superhydrophobic surface curvature dependence of internal advection dynamic within sessile droplets. Langmuir 35:2326–2333

    Article  CAS  Google Scholar 

  10. Matin A, Baig U, Gondal MA, Akhtar S, Zubair SM (2018) Superhydrophobic and superoleophilic surfaces prepared by spray-coating of facile synthesized Cerium (IV) oxide nanoparticles for efficient oil/water separation. Appl Surf Sci 462:95–104

    Article  CAS  Google Scholar 

  11. Rima S, Lattuada M (2018) Protein Amyloid fibrils as template for the synthesis of silica nanofibers, and their use to prepare superhydrophobic, lotus-like surfaces. Small 14:1802854

    Article  Google Scholar 

  12. Wang P, Zhang D, Qiu R, Hou BR (2011) Super-hydrophobic film prepared on zinc as corrosion barrier. Corros Sci 53:2080–2086

    Article  CAS  Google Scholar 

  13. Wang P, Zhang D, Lu Z, Sun S (2016) Fabrication of slippery lubricant-inflused porous surface for inhibition microbially influenced corrosion. ACS Appl Mater Interfaces 8:1120–1127

    Article  CAS  Google Scholar 

  14. Qiu R, Zhang D, Wang P (2013) Superhydrophobic-carbon fibre growth on a zincsurface for corrosion inhibition. Corros Sci 66:350–359

    Article  CAS  Google Scholar 

  15. Mohamed AS, Tafreshi HV, Gadelhak M (2012) Superhydrophobic surfaces: from the lotus leaf to the submarine. Cr Mecanique 340:18–34

    Article  Google Scholar 

  16. Wong TS, Kang SH, Tang SK, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  CAS  Google Scholar 

  17. Charpentier TV, Neville A, Baudin S, Smith MJ, Euvrard M, Bell A, Wang C, Barker R (2015) Liquid infused porous surfaces for mineral fouling mitigation. J Colloid Interface Sci 444:81–86

    Article  CAS  Google Scholar 

  18. Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK (2013) Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29:5230–5238

    Article  CAS  Google Scholar 

  19. Shillingford C, Maccallum N, Wong TS, Kim P, Aizenberg J (2014) Fabrics coated with lubricated nanostructures display robust omniphobicity. Nanotechnology 25(1)

  20. Wang P, Li TP, Zhang D (2017) Fabrication of non-wetting surfaces on zinc surface as corrosion barrier. Corros Sci 128:110–119

    Article  CAS  Google Scholar 

  21. Tuo YJ, Zhang HF, Chen WP, Liu XW (2017) Corrosion protection application of slippery liquid-inflused porous surface based on aluminum foil. Appl Surf Sci 423:365–374

    Article  CAS  Google Scholar 

  22. Li H, Zheng MJ, Ma L, Zhu CQ, Lu S (2013) Two-dimensional ZnO nanoflakes coated mesh for the separation of water and oil. Mater Res Bull 48(1):25–29

    Article  CAS  Google Scholar 

  23. Chen JP, Zhang XB, Luo ZQ (2008) Oriented growth of ZnO nanostructures on Si and Al substrates. Surf Coat Technol 201:4681–4685

    Article  Google Scholar 

  24. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Farad Soc 40:546

    Article  CAS  Google Scholar 

  25. Tenjimbayashi M, Nishioka S, Kobayashi Y, Kawase K, Li JT, Abe J, Shiratori S (2018) A lubricant-sandwiched coating with long-term stable anticorrosion performance. Langmuir 34:1386–1393

    Article  CAS  Google Scholar 

  26. Deyab MA (2016) Electrochemical investigations on pitting corrosion inhibition of mild steel by provitamin B5 in circulating cooling water, electrochim. Acta 202:262–268

    CAS  Google Scholar 

  27. Goldman DE (1943) Potential impedance and rectification in membranes. J Gen Physiol 27:37–60

    Article  CAS  Google Scholar 

  28. Ma HY, Yang C, Chen SH, Jiao YL, Huang SX, Li DG, Luo JL (2003) Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol–modified copper electrodes in halide-containing solutions. Electrochim Acta 48:4277–4289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (No: 1808085ME140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Fu, X. & Chu, X. Applicability of anti-corrosion for slippery liquid-infused porous surface using a double-layer ZnO nanostructure on Al foil. J Mater Sci 57, 3746–3756 (2022). https://doi.org/10.1007/s10853-021-06819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06819-9

Navigation