Skip to main content
Log in

High thermoelectric performance of nanostructured Mg3Sb2 on synergistic Te-doping and Mg/Y interstitial

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nanostructured Mg3Sb2 and Mg3.17Y0.03Sb1.985Te0.015 bulks were prepared using the induction melting-melt spinning (MS)-spark plasma sintering (SPS) method. The grain size of the sample prepared by this method was 50–80 nm. Mg3Sb2 materials co-doped with Y and Te effectively improved the carrier concentration and mobility. The room temperature carrier concentration was significantly increased from 1.28 × 1018 cm−3 for Mg3Sb2 to 7.12 × 1019 cm−3 for Mg3.17Y0.03Sb1.985Te0.015, and carrier mobility from 21.80 cm2V−1 s−1 for Mg3Sb2 to 67.53 cm2V−1 s−1 for Mg3.17Y0.03Sb1.985Te0.015. More carriers were introduced by the doping of the Mg site with the Y element. When Te replaced Sb in the covalent bonding layer, it weakened the polar covalent bond with Mg, thus favoring the movement of carriers. Meanwhile, the co-doping of Y and Te enhanced phonon scattering and reduced the thermal conductivity. The thermal conductivity of the nanostructured Mg3.17Y0.03Sb1.985Te0.015 is about 0.74 Wm−1 K−1, which was only 69% of the bulk counterparts. When the grain size reached the nanometer scale, the grain boundary density increased substantially. The periodic potential field within a single grain was destroyed at the grain boundary. The interface interfered with the carriers and phonon transport, which further reduced the thermal conductivity. At 773 K, the ZT peak value of the nanostructured Mg3.17Y0.03Sb1.985Te0.015 was improved to 1.28, which was significantly higher than that of the non-doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Snyder GJ, Toberer ES (2011) Materials for sustainable energy. In: Snyder GJ, Toberer ES (eds) Complex thermoelectric materials. Nature Publishing Group, Berlin

    Google Scholar 

  2. Gayner C, Kar KK (2016) Recent advances in thermoelectric materials. Prog Mater Sci 83:330–382. https://doi.org/10.1016/j.pmatsci.2016.07.002

    Article  CAS  Google Scholar 

  3. Nguyen DM, Xu H, Zhang Y, Zhang B (2015) Active thermal cloak. Appl Phys Lett 107:121901. https://doi.org/10.1063/1.4930989

    Article  CAS  Google Scholar 

  4. Tan G, Zhao L-D, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116:12123–12149. https://doi.org/10.1021/acs.chemrev.6b00255

    Article  CAS  Google Scholar 

  5. Liu K, Liu Z, Zhang F, Zhang J, Yang X, Zhang J, Shi J, Ren G, He T, Duan J (2019) Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials. J Alloy Compd 808:151476. https://doi.org/10.1016/j.jallcom.2019.07.188

    Article  CAS  Google Scholar 

  6. Zhang F, Zang Y, Huang D, Di Ca X, Gao HS, Zhu D (2015) Modulated thermoelectric properties of organic semiconductors using field-effect transistors. Adv Func Mater 25:3004–3012. https://doi.org/10.1002/adfm.201404397

    Article  CAS  Google Scholar 

  7. Pei Y, LaLonde A, Iwanaga S, Snyder GJ (2011) High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci 4:2085–2089. https://doi.org/10.1039/c0ee00456a

    Article  CAS  Google Scholar 

  8. Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T (2018) Thermoelectric materials and applications for energy harvesting power generation. Sci Technol Adv Mater 19:836–862. https://doi.org/10.1080/14686996.2018.1530938

    Article  CAS  Google Scholar 

  9. Nandihalli N, Liu C-J, Mori T (2020) Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.105186

    Article  Google Scholar 

  10. Haras M, Skotnicki T (2018) Thermoelectricity for IoT–A review. Nano Energy 54:461–476. https://doi.org/10.1016/j.nanoen.2018.10.013

    Article  CAS  Google Scholar 

  11. Tarancón A (2019) Powering the IoT revolution with heat. Nature Electron 2:270–271. https://doi.org/10.1038/s41928-019-0276-4

    Article  Google Scholar 

  12. Kumar VN, Hayakawa Y, Udono H, Inatomi Y (2019) Enhanced thermoelectric properties of InSb: studies on In/Ga doped GaSb/InSb crystals. Intermetallics 105:21–28. https://doi.org/10.1016/j.intermet.2018.11.006

    Article  CAS  Google Scholar 

  13. Jørgensen LR, Zhang J, Zeuthen CB, Iversen BB (2018) Thermal stability of Mg 3 Sb 1.475 Bi 0.475 Te 0.05 high performance n-type thermoelectric investigated through powder X-ray diffraction and pair distribution function analysis. J Mater Chem A 6:17171–17176. https://doi.org/10.1039/C8TA06544F

    Article  Google Scholar 

  14. Gorai P, Ortiz BR, Toberer ES, Stevanović V (2018) Investigation of n-type doping strategies for Mg 3 Sb 2. J Mater Chem A 6:13806–13815. https://doi.org/10.1039/C8TA03344G

    Article  CAS  Google Scholar 

  15. Akdere Ü, Günay SD, Taşseven Ç (2019) Ordering and diffusion in liquid magnesium antimonide (Mg 3 Sb 2) from hypernetted-chain theory and molecular dynamics simulation. Ionics 25:2711–2717. https://doi.org/10.1007/s11581-018-2757-2

    Article  CAS  Google Scholar 

  16. Xiao Y, Zhang X, Zhang J (2020) [Ca24Al28O64] 4+(4e−) electrides ceramic with high-electron concentration rapidly fabricated by spark plasma sintering of Ca, Al organic powder precursor in spark plasma sintering. Ceram Int 46:27742–27749. https://doi.org/10.1016/j.ceramint.2020.07.273

    Article  CAS  Google Scholar 

  17. Li X, Xie H, Yang B (2020) Anisotropic electronic transport properties of Ag-oped Mg3Sb2 crystal prepared by directional solidification. J Appl Phys 127:195104. https://doi.org/10.1063/5.0006340

    Article  CAS  Google Scholar 

  18. Song S, Mao J, Shuai J, Zhu H, Ren Z, Saparamadu U, Tang Z, Wang B, Ren Z (2018) Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials. Appl Phys Lett 112:092103. https://doi.org/10.1063/1.5000053

    Article  CAS  Google Scholar 

  19. Shi X, Zhao T, Zhang X, Sun C, Chen Z, Lin S, Li W, Gu H, Pei Y (2019) Extraordinary n-Type Mg3SbBi Thermoelectrics Enabled by Yttrium Doping. Adv Mater 31:1903387. https://doi.org/10.1002/adma.201903387

    Article  CAS  Google Scholar 

  20. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69. https://doi.org/10.1038/nature09996

    Article  CAS  Google Scholar 

  21. Shi X, Sun C, Bu Z, Zhang X, Wu Y, Lin S, Li W, Faghaninia A, Jain A, Pei Y (2019) Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics. Adv Sci 6:1802286. https://doi.org/10.1002/advs.201802286

    Article  CAS  Google Scholar 

  22. Zhang J, Iversen BB (2019) Fermi surface complexity, effective mass, and conduction band alignment in n-type thermoelectric Mg3Sb2–x Bi x from first principles calculations. J Appl Phys 126:085104. https://doi.org/10.1063/1.5107484

    Article  CAS  Google Scholar 

  23. Gorai P, Toberer ES, Stevanović V (2019) Effective n-type doping of Mg 3 Sb 2 with group-3 elements. J Appl Phys 125:025105. https://doi.org/10.1063/1.5081833

    Article  CAS  Google Scholar 

  24. Zhang F, Sun Y, Wang H, Zhang G, Qin G, Zhang J (2021) Regulated microarchitecture, spin polarization state, and observed charge transfers for cerium boride CeB6 under electrical Field. Mater Today Commun 26:101877. https://doi.org/10.1016/j.mtcomm.2020.101877

    Article  CAS  Google Scholar 

  25. Zhang X, Feng Q, Zhao J, Liu H, Li J, Xiao Y, Li F, Lu Q (2020) Sr-doping enhanced electrical transport and thermionic emission of single crystal 12CaO·7Al2O3 electride. Curr Appl Phys 20:96–101. https://doi.org/10.1016/j.cap.2019.10.008

    Article  CAS  Google Scholar 

  26. Kanno T, Tamaki H, Sato HK, Kang SD, Ohno S, Imasato K, Kuo JJ, Snyder GJ, Miyazaki Y (2018) Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3. 2Sb1. 5Bi0. 49Te0. 01. Appl Phys Lett. https://doi.org/10.1063/1.5016488

    Article  Google Scholar 

  27. Zhang J, Song L, Borup KA, Jørgensen MRV, Iversen BB (2018) New insight on tuning electrical transport properties via chalcogen doping in n-type Mg3Sb2-based thermoelectric materials. Adv Energy Mater 8:1702776. https://doi.org/10.1002/aenm.201702776

    Article  CAS  Google Scholar 

  28. Zhang J, Song L, Mamakhel A, Jørgensen MRV, Iversen BB (2017) High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application. Chem Mater 29:5371–5383. https://doi.org/10.1021/acs.chemmater.7b01746

    Article  CAS  Google Scholar 

  29. Zhang J, Song L, Pedersen SH, Yin H, Iversen BB (2017) Discovery of high-performance low-cost n-type Mg 3 Sb 2-based thermoelectric materials with multi-valley conduction bands. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms13901

    Article  CAS  Google Scholar 

  30. Bhardwaj A, Chauhan N, Misra D (2015) Significantly enhanced thermoelectric figure of merit of p-type Mg 3 Sb 2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering. J Mater Chem A 3:10777–10786. https://doi.org/10.1039/c5ta02155c

    Article  CAS  Google Scholar 

  31. Shi X, Zhang X, Ganose A, Park J, Sun C, Chen Z, Lin S, Li W, Jain A, Pei Y (2021) Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-xBix thermoelectrics. Mater Today Phys 18:100362. https://doi.org/10.1016/j.mtphys.2021.100362

    Article  CAS  Google Scholar 

  32. Liang Z, Xu C, Shang H, Zhu Q, Ding F, Mao J, Ren Z (2021) High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3. Mater Today Phys 19:100413. https://doi.org/10.1016/j.mtphys.2021.100413

    Article  CAS  Google Scholar 

  33. Liu Z, Sato N, Gao W, Yubuta K, Kawamoto N, Mitome M, Kurashima K, Owada Y, Nagase K, Lee C-H (2021) Demonstration of ultrahigh thermoelectric efficiency of ∼ 7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 5:1196–1208. https://doi.org/10.1016/j.joule.2021.03.017

    Article  CAS  Google Scholar 

  34. Zhang X, Liu H, Lu Q, Zhang J, Zhang F (2013) Enhanced thermoelectric performance of Mg2Si0. 4Sn0. 6 solid solutions by in nanostructures and minute Bi-doping. Appl Phys Lett. https://doi.org/10.1063/1.4816971

    Article  Google Scholar 

  35. Zhang X, Liu H, Li S, Zhang F, Lu Q, Zhang J (2014) Tunable microstructures and improved thermoelectric performance of Mg2 (Si0. 4− xSbxSn0. 6) solid solutions. Mater Lett 123:31–34. https://doi.org/10.1016/j.matlet.2014.02.038

    Article  CAS  Google Scholar 

  36. Zhang X, Liu H, Li S, Zhang F, Lu Q, Li J (2014) Multiscale microstructures and improved thermoelectric performance of Mg 2 (Si 0.4 Sn 0.6) Sb x solid solutions. Funct Mater Lett 7:1450036

    Article  Google Scholar 

  37. Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder GJ, Zhao X (2013) Low electron scattering potentials in high performance Mg2Si0. 45Sn0. 55 based thermoelectric solid solutions with band convergence. Adv Energy Mater 3:1238–1244. https://doi.org/10.1002/aenm.201300174

    Article  CAS  Google Scholar 

  38. Jiang G, Chen L, He J, Gao H, Du Z, Zhao X, Tritt TM, Zhu T (2013) Improving p-type thermoelectric performance of Mg2 (Ge, Sn) compounds via solid solution and Ag doping. Intermetallics 32:312–317. https://doi.org/10.1016/j.intermet.2012.08.002

    Article  CAS  Google Scholar 

  39. Du Z, Gao H, Cui J (2015) Thermoelectric performance of quaternary Mg2 (1+ x) Si0. 2Ge0. 1Sn0. 7 (0.06≤ x≤ 0.12) solid solutions with band convergence. Curr Appl Phys 15:784–788. https://doi.org/10.1016/j.cap.2015.04.034

    Article  Google Scholar 

  40. Gao H, Zhu T, Zhao X, Deng Y (2014) Synergetic effect of Zn substitution on the electron and phonon transport in Mg 2 Si 0.5 Sn 0.5-based thermoelectric materials. Dalton Trans 43:14072–14078. https://doi.org/10.1039/c4dt01734j

    Article  CAS  Google Scholar 

  41. Zhao J, Liu Z, Reid J, Takarabe K, Iida T, Wang B, Yoshiya U, John ST (2015) Thermoelectric and electrical transport properties of Mg 2 Si multi-doped with Sb, Al and Zn. J Mater Chem A 3:19774–19782. https://doi.org/10.1039/c5ta03751d

    Article  CAS  Google Scholar 

  42. Xiao Y, Wu Y, Nan P, Dong H, Chen Z, Chen Z, Gu H, Ge B, Li W, Pei Y (2020) Cu interstitials enable carriers and dislocations for thermoelectric enhancements in n-PbTe0. 75Se0. 25. Chem 6:523–537. https://doi.org/10.1016/j.chempr.2020.01.002

    Article  CAS  Google Scholar 

  43. Bux SK, Yeung MT, Toberer ES, Snyder GJ, Kaner RB, Fleurial J-P (2011) Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J Mater Chem 21:12259–12266. https://doi.org/10.1039/C1JM10827A

    Article  CAS  Google Scholar 

  44. Liu W, Tang X, Li H, Sharp J, Zhou X, Uher C (2011) Optimized thermoelectric properties of Sb-doped Mg2 (1+ z) Si0. 5–y Sn0. 5Sb y through adjustment of the Mg content. Chem Mater 23:5256–5263. https://doi.org/10.1021/cm202445d

    Article  CAS  Google Scholar 

  45. Wang Y, Zhang X, Wang Y, Liu H, Zhang J (2019) Enhanced thermoelectric properties of n-type Mg3Sb2 by excess magnesium and tellurium doping. Phys Status solidi (a) 216:1800811

    Article  Google Scholar 

  46. Huang S, Wang Z, Xiong R, Yu H, Shi J (2019) Significant enhancement in thermoelectric performance of Mg3Sb2 from bulk to two-dimensional mono layer. Nano Energy 62:212–219. https://doi.org/10.1016/j.nanoen.2019.05.028

    Article  CAS  Google Scholar 

  47. Song L, Zhang J, Iversen BB (2017) Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg 3 Sb 2 thermoelectric materials. J Mater Chem A 5:4932–4939. https://doi.org/10.1039/C6TA08316A

    Article  CAS  Google Scholar 

  48. Wang Y, Zhang X, Liu Y, Wang Y, Liu H, Zhang J (2020) Enhanced electrical transport performance through cation site doping in Y-doped Mg3. 2Sb2. J Materiomics 6:216–223. https://doi.org/10.1016/j.jmat.2019.12.007

    Article  Google Scholar 

  49. Zhang J, Song L, Iversen BB (2020) Rapid one-step synthesis and compaction of high-performance n-Type Mg3Sb2 thermoelectrics. Angew Chem Int Ed 59:4278–4282. https://doi.org/10.1002/anie.201912909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51371010, 51572066, 50801002), the Fundamental Research Funds for the Central Universities (Grant No. PXM2019-014204-500032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Qingmei Lu.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X., Wang, Y. et al. High thermoelectric performance of nanostructured Mg3Sb2 on synergistic Te-doping and Mg/Y interstitial. J Mater Sci 57, 3183–3192 (2022). https://doi.org/10.1007/s10853-021-06797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06797-y

Navigation