Skip to main content
Log in

Enhanced nonlinear absorption and optical limiting of transparent, electrospun graphite filled polymer composite nanofibers in near IR region

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

PVP (Polyvinylpyrrolidone) and PVP/GR composite nanofibers containing 1.0, 1.5 and 2.0 wt% of graphite (GR) filler were produced by electrospinning. The nanofibrous structure of electrospun mats allows high light-matter interactions, which greatly affects the nonlinear optical character of the materials. SEM measurements showed that the PVP/GR nanofibers are smooth, transparent and of cylindrical morphology in the 161–218 nm diameter range with a high homogeneity. The energy band gap increased from 1.87 to 2.02 eV and then decreased to 1.83 eV with increasing GR filler concentration in PVP while the Urbach energy decreased indicating the existence of localized defect states. To derive the transmission in open aperture Z-scan data at 1064 and 1200 nm, a theoretical model incorporating one-photon, two-photon and free carrier absorptions and their saturations were considered. The nonlinear absorption coefficient (βeff) increased from 3.31 × −5 to 1.01 × −4 m\W with increasing GR filler concentration in PVP although increasing GR filler content leads to decrease the number of defect states. The enhanced nonlinear absorption and optical limiting behavior with increasing GR filler content in PVP nanofibers are attributed to the increasing metallic nature, which enhances the FCA contribution. Femtosecond transient absorption spectroscopy measurements indicated that the charge transfer increases in GR-filled nanofibers. Our findings showed that GR-filled nanofibers feature highly desired properties in optical limiting applications such as high linear transmittance (> 80%), high nonlinear absorption and low optical limiting threshold. Therefore, these materials are good optical limiter candidates in the near IR wavelength region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pascariu P, Airinei A, Grigoras M, Vacareanu L, Iacomi F (2015) Appl Surf Sci 352:95–102. https://doi.org/10.1016/j.apsusc.2015.03.063

    Article  CAS  Google Scholar 

  2. Ghanipour M, Dorranian D (2013). J Nanomater. https://doi.org/10.1155/2013/897043

    Article  Google Scholar 

  3. Delmonte J (1990) Metal/polymer composites. Springer, Berlin

    Book  Google Scholar 

  4. Gu FX, Yu HK, Wang P, Yang ZY, Tong LM (2010) ACS Nano 4:5332–5338. https://doi.org/10.1021/nn100775v

    Article  CAS  Google Scholar 

  5. Meng C, Xiao Y, Wang P, Zhang L, Liu YX, Tong LM (2011) Adv Mater 23:3770–3774. https://doi.org/10.1002/adma.201101392

    Article  CAS  Google Scholar 

  6. Wang P, Zhang L, Xia YN, Tong LM, Xu X, Ying YB (2012) Nano Lett 12:3145–3150. https://doi.org/10.1021/nl301055f

    Article  CAS  Google Scholar 

  7. Yang XG, Xu R, Bao DH, Li BJ (2014) Acs Appl Mater Inter 6:11846–11850. https://doi.org/10.1021/am503580j

    Article  CAS  Google Scholar 

  8. Yan YL, Zhang C, Yao JN, Zhao YS (2013) Adv Mater 25:3627–3638. https://doi.org/10.1002/adma.201300325

    Article  CAS  Google Scholar 

  9. Garreau A, Duvail JL (2014) Adv Opt Mater 2:1122–1140. https://doi.org/10.1002/adom.201400232

    Article  CAS  Google Scholar 

  10. Iliopoulos K, Kasprowicz D, Majchrowski A, Michalski E, Gindre D, Sahraoui B (2013) Appl Phys Lett 103:231103-1–231103-4. https://doi.org/10.1063/1.4837055

    Article  CAS  Google Scholar 

  11. Banerjee M, Jain A, Mukherjee GS (2019) Polym Composite 40:E765–E775. https://doi.org/10.1002/pc.25017

    Article  CAS  Google Scholar 

  12. Waszkowska K, Krupka O, Kharchenko O et al (2020) Appl Nanosci 10:4977–4982. https://doi.org/10.1007/s13204-020-01373-3

    Article  CAS  Google Scholar 

  13. Gautam A, Ram S (2010) Mater Chem Phys 119:266–271. https://doi.org/10.1016/j.matchemphys.2009.08.050

    Article  CAS  Google Scholar 

  14. Srivastava S, Haridas M, Basu JK (2008) B Mater Sci 31:213–217. https://doi.org/10.1007/s12034-008-0038-9

    Article  Google Scholar 

  15. Djurisic AB, Li EH (1999) J Appl Phys 85:7404–7410. https://doi.org/10.1063/1.369370

    Article  CAS  Google Scholar 

  16. Zhou JF, Wang YG, Cheng L, Wu Z, Sun XD, Peng J (2016) Neural Regen Res 11:1644–1652. https://doi.org/10.4103/1673-5374.193245

    Article  CAS  Google Scholar 

  17. Zarei M, Karbasi S (2018) J Porous Mat 25:259–272. https://doi.org/10.1007/s10934-017-0439-5

    Article  CAS  Google Scholar 

  18. Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Polymer 47:8019–8025. https://doi.org/10.1016/j.polymer.2006.09.012

    Article  CAS  Google Scholar 

  19. Al-Dhahebi AM, Gopinath SCB, Saheed MSM (2020). Nano Converg. https://doi.org/10.1186/s40580-020-00237-4

    Article  Google Scholar 

  20. Silvestri D, Miksicek J, Waclawek S, Torres-Mendieta R, Padil VVT, Cernik M (2019) Int J Biol Macromol 124:396–402. https://doi.org/10.1016/j.ijbiomac.2018.11.243

    Article  CAS  Google Scholar 

  21. Nag A, Afasrimanesh N, Feng SL, Mukhopadhyay SC (2018) Sensor Actuat a-Phys 271:257–269. https://doi.org/10.1016/j.sna.2018.01.044

    Article  CAS  Google Scholar 

  22. Tang CB, Liu DX, Wang Z, Gao Y (2011) Appl Surf Sci 257:6364–6371. https://doi.org/10.1016/j.apsusc.2011.01.120

    Article  CAS  Google Scholar 

  23. Bullock CJ, Bussy C (2019) Adv Mater Interfaces 6:1900229-1–1900229-15. https://doi.org/10.1002/admi.201900229

    Article  CAS  Google Scholar 

  24. Liao CZ, Li YC, Tjong SC (2018) Int J Mol Sci 19:3564-1–3564-36. https://doi.org/10.3390/ijms19113564

    Article  CAS  Google Scholar 

  25. Khan MA, Cantu E, Tonello S, Serpelloni M, Lopomo NF, Sardini E (2019) Appl Sci-Basel 9:961-1–961-18. https://doi.org/10.3390/app9050961

    Article  CAS  Google Scholar 

  26. Wang L, Wu YB, Hu TL, Guo BL, Ma PX (2017) Acta Biomater 59:68–81. https://doi.org/10.1016/j.actbio.2017.06.036

    Article  CAS  Google Scholar 

  27. Roman-Doval R, Tellez-Cruz MM, Rojas-Chavez H, Cruz-Martinez H, Carrasco-Torres G, Vasquez-Garzon VR (2019) J Mater Sci 54:3342–3353. https://doi.org/10.1007/s10853-018-3024-7

    Article  CAS  Google Scholar 

  28. Kurakula M, Rao GSNK (2020) Eur Polym J 136:109919-1–109919-16. https://doi.org/10.1016/j.eurpolymj.2020.109919

    Article  CAS  Google Scholar 

  29. Maleki M, Natalello A, Pugliese R, Gelain F (2017) Acta Biomater 51:268–278. https://doi.org/10.1016/j.actbio.2017.01.038

    Article  CAS  Google Scholar 

  30. Burstein E (1954) Phys Rev 93:632–633. https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  31. Hamberg I, Granqvist CG, Berggren KF, Sernelius BE, Engstrom L (1984) Phys Rev B 30:3240–3249. https://doi.org/10.1103/PhysRevB.30.3240

    Article  CAS  Google Scholar 

  32. NBC S. Brandt (1988) Semimetals: Graphite and its compounds. North Holland

  33. Ziabari AA, Ghodsi FE (2012) J Mater Sci: Mater Electron 23:1628–1639

    CAS  Google Scholar 

  34. Urbach F (1953) Phys Rev 92:1324-1–1324-1. https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  35. Yuksek M, Kurum U, Yaglioglu HG, Elmali A, Ates A (2010) J Appl Phys 107:033115-1–033115-7. https://doi.org/10.1063/1.3298500

    Article  CAS  Google Scholar 

  36. Humphrey JL, Kuciauskas D (2006) J Am Chem Soc 128:3902–3903. https://doi.org/10.1021/ja0588353

    Article  CAS  Google Scholar 

  37. Zhang XY, Selkirk A, Zhang SF et al (2017) Chem-Eur J 23:3321–3327. https://doi.org/10.1002/chem.201604395

    Article  CAS  Google Scholar 

  38. Ran X, Li YQ, Wei ZR et al (2021) Opt Expr 29:5213–5225. https://doi.org/10.1364/Oe.416079

    Article  CAS  Google Scholar 

  39. Kumar R, Kumar A, Verma N, Anupama AV, Philip R, Sahoo B (2019) Carbon 153:545–556. https://doi.org/10.1016/j.carbon.2019.07.058

    Article  CAS  Google Scholar 

  40. Ouyang QY, Yu HL, Zhang K, Chen YJ (2014) J Mater Chem C 2:6319–6325. https://doi.org/10.1039/c4tc00909f

    Article  CAS  Google Scholar 

  41. Harter DJ, Shand ML, Band YB (1984) J Appl Phys 56:865–868. https://doi.org/10.1063/1.334025

    Article  CAS  Google Scholar 

  42. Dini D, Calvete MJF, Hanack M (2016) Chem Rev 116:13043–13233. https://doi.org/10.1021/acs.chemrev.6b00033

    Article  CAS  Google Scholar 

  43. Rahmawati F, Wulandari R, Nofaris E (2017) Sci Eng Compos Mater 24:253–260. https://doi.org/10.1515/secm-2015-0162

    Article  CAS  Google Scholar 

  44. Kumar R, Kumar A, Verma N, Philip R, Sahoo B (2020) Phys Chem Chem Phys 22:27224–27240. https://doi.org/10.1039/d0cp03328f

    Article  CAS  Google Scholar 

  45. Perumbilavil S, Lopez-Ortega A, Tiwari GK, Nogues J, Endo T, Philip R (2018) Small 14:1701001-1–1701001-9. https://doi.org/10.1002/smll.201701001

    Article  CAS  Google Scholar 

  46. Sridharan K, Ollakkan MS, Philip R, Park TJ (2013) Carbon 63:263–273. https://doi.org/10.1016/j.carbon.2013.06.079

    Article  CAS  Google Scholar 

  47. Saravanan M, Girisun TCS (2015) Mater Chem Phys 160:413–419. https://doi.org/10.1016/j.matchemphys.2015.05.009

    Article  CAS  Google Scholar 

  48. Savelyev MS, Gerasimenko AY, Podgaetskii VM, Tereshchenko SA, Selishchev SV, Tolbin AY (2019) Opt Laser Technol 117:272–279. https://doi.org/10.1016/j.optlastec.2019.04.036

    Article  CAS  Google Scholar 

  49. Abdullah M, Bakhtiar H, Krishnan G, Aziz MSA, Danial WH, Islam S (2019) Opt Laser Technol 115:97–103. https://doi.org/10.1016/j.optlastec.2019.01.032

    Article  CAS  Google Scholar 

  50. Praveen PA, Prabhakaran SP, Babu RR, Sethuraman K, Ramamurthi K (2015) B Mater Sci 38:645–651. https://doi.org/10.1007/s12034-015-0853-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serife Akkoyun or Ahmet Karatay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepe, Y., Akkoyun, S., Karatay, A. et al. Enhanced nonlinear absorption and optical limiting of transparent, electrospun graphite filled polymer composite nanofibers in near IR region. J Mater Sci 57, 1058–1068 (2022). https://doi.org/10.1007/s10853-021-06603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06603-9

Navigation