Skip to main content

Advertisement

Log in

Energy-harvesting concrete for smart and sustainable infrastructures

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Concrete with smart and functional properties (e.g., self-sensing, self-healing, and energy harvesting) represents a transformative direction in the field of construction materials. Energy-harvesting concrete has the capability to store or convert the ambient energy (e.g., light, thermal, and mechanical energy) for feasible uses, alleviating global energy and pollution problems as well as reducing carbon footprint. The employment of energy-harvesting concrete can endow infrastructures (e.g., buildings, railways, and highways) with energy self-sufficiency, effectively promoting sustainable infrastructure development. This paper provides a systematic overview on the principles, fabrication, properties, and applications of energy-harvesting concrete (including light-emitting, thermal-storing, thermoelectric, pyroelectric, and piezoelectric concretes). The paper concludes with an outline of some future challenges and opportunities in the application of energy-harvesting concrete in sustainable infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Copyright 2013, Elsevier

Figure 5

Copyright 2016, Elsevier

Figure 6

Copyright 2014, Elsevier

Figure 7
Figure 8
Figure 9

Copyright 2011, Royal Society of Chemistry

Figure 10

Copyright 2018, Springer Nature

Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Abbreviations

Q :

Total storage of thermal energy

m :

Mass

C p :

Specific heat

a m :

Melting fraction of phase change material

ΔH m :

Melting latent heat of phase change material

T m,p :

Melting temperature of phase change material

T s :

Initial temperature

T e :

Final temperature

ΔT :

Temperature difference

ΔV :

Electromotive force

S :

Seebeck coefficient

T :

Temperature

η max :

Maximum energy conversion efficiency

T H :

Heating temperature

T C :

Cooling temperature

ZT:

Thermoelectric figure of merit

κ :

Thermal conductivity

σ :

Electric conductivity

ρ :

Electric resistivity

p :

Pyroelectric coefficient

i p :

Pyroelectric current

A :

Effective area of thermoelectric concrete

d 33 :

Piezoelectric coefficient

g 33 :

Piezoelectric voltage coefficient

K :

Electromechanical coupling coefficient

T 3 :

Compressive stress

D 3 :

The potential shift on the electrode surface

ε :

Dielectric constant

ε 0 :

Vacuum dielectric constant

K t :

Electromechanical coupling coefficient

f s :

Series resonance frequency

f p :

Parallel resonance frequency

BNBK:

Lead-free bismuth sodium titanate-bismuth potassium titanate-barium titanate

BNT:

Bismuth sodium titanate

BKT:

Bismuth potassium titanate

BT:

Barium titanate

CF:

Carbon fiber

CNT:

Carbon nanotube

DPLZT:

Doped lead lanthanum zirconate titanate

MWCNTs:

Multi-walled carbon nanotubes

PCM:

Phase change material

PLZT:

Lead lanthanum zirconate titanate

PMN:

Lead niobium magnesium titanate

PVDF:

Polyvinylidene fluoride

PZT:

Lead zirconate titanate

PZTML:

PZT multilayer

SS:

Steel slag

TGse:

Triglycine selenate

References

  1. Ding S, Dong S, Ashour A, Han B (2019) Development of sensing concrete: principles, properties and its applications. J Appl Phys 126(24):241101

    Article  CAS  Google Scholar 

  2. Huang Y, Zhu M, Huang Y, Pei Z, Li H, Wang Z, Xue Q, Zhi C (2016) Multifunctional energy storage and conversion devices. Adv Mater 28(38):8344–8364

    Article  CAS  Google Scholar 

  3. Chiew SM, Ibrahim IS, Sarbini NN, Ariffin MAM, Lee HS, Singh JK (2020) Development of light-transmitting concrete—a review. Mater Today Proc 39(2):1046–1050

    Google Scholar 

  4. Han B, Ding S, Yu X (2015) Intrinsic self-sensing concrete and structures: a review. Measurement 59:110–128

    Article  Google Scholar 

  5. Zhang S, Feng D, Shi L, Wang L, Jing Y, Tian L, Li Z, Wang G, Zhao L, Yan Y (2021) A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew Sustain Energy Rev 135:110127

    Article  CAS  Google Scholar 

  6. Guo L, Lu Q (2017) Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew Sustain Energy Rev 72:761–773

    Article  CAS  Google Scholar 

  7. Qian J (1984) Concrete glowing in the dark. Build Mater Ind Inform 04:6

    Google Scholar 

  8. Hawes DW, Banu D, Feldman D (1989) Latent heat storage in concrete. Sol Energy Mater 19(3):335–348

    Article  CAS  Google Scholar 

  9. Sun M, Li Z, Mao Q, Shen D (1998) Study on the hole conduction phenomenon in carbon fiber-reinforced concrete. Cement Concrete Res 28(4):549–554

    Article  CAS  Google Scholar 

  10. Sun M, Li Z, Mao Q, Shen D (1998) Thermoelectric percolation phenomena in carbon fiber-reinforced concrete. Cement Concrete Res 28(12):1707–1712

    Article  CAS  Google Scholar 

  11. Wen S, Chung DD (2003) Pyroelectric behavior of cement-based materials. Cement Concrete Res 33(10):1675–1679

    Article  CAS  Google Scholar 

  12. Li Z, Zhang D, Wu K (2004) Cement-based 0–3 piezoelectric composites. J Am Ceram Soc 85(2):305–313

    Article  Google Scholar 

  13. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J Electrochem Soc 143(8):2670–2673

    Article  CAS  Google Scholar 

  14. Clabau F, Rocquefelte X, Jobic S, Deniard P, Mercier TL (2005) Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+. Chem Mater 17(15):3904–3912

    Article  CAS  Google Scholar 

  15. Zhang T, Qiang S, Wang S (1999) Luminescent properties of MAl2O4: Eu2+, Re3+. Chin J Lumin 20(2):170–175

    CAS  Google Scholar 

  16. Aitasalo T, Hls J, Jungner H, Lastusaar M, Niittykoski J (2001) Mechanisms of persistent luminescence in Eu2+, Re3+ doped alkaline earth aluminates. J Lumin 94:59–63

    Article  Google Scholar 

  17. Jia D, Meltzer RS, Yen WM, Jia W, Wang X (2002) Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer. Appl Phys Lett 80(9):1535–1537

    Article  CAS  Google Scholar 

  18. Xiao Z, Luo X (2005) Light storing luminescent materials and their products. Chemical Industry Press, Beijing

    Google Scholar 

  19. Li J (2003) Rare earth luminescent materials and their applications. Chemical Industry Press, China

    Google Scholar 

  20. Qiu T, Zhenguo JI, Kong Z, Hongxia LI, Zhang E (2012) Preparation and optimization of long persistent luminescent Sr4Al14O25: (Eu, Dy) phosphor materials: preparation and optimization of long persistent luminescent Sr4Al14O25: (Eu, Dy) phosphor materials. J Inorg Mater 27(12):1341–1344

    Article  CAS  Google Scholar 

  21. Yuan J, Yuan H, Zhang Z (2006) Synthesis of blue long after glow phosphors SrAl4O7: Eu3+, Dy3+ and its luminescent properties. J Optoelectron Laser 17(4):444–449

    Google Scholar 

  22. Clabau F, Rocquefelte X, Le Mercier T, Deniard P, Jobic S, Whangbo MH (2006) Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem Mater 18(14):3212–3220

    Article  CAS  Google Scholar 

  23. Wang X, Jia D, Yen WM (2003) Mn2+ activated green, yellow, and red long persistent phosphors. J Lumin 102103:34–37

    Article  CAS  Google Scholar 

  24. Lei B, Liu Y, Ye Z, Shi C (2004) Luminescence properties of CdSiO3:Mn2+ phosphor. J Lumin 109(3):215–219

    Article  CAS  Google Scholar 

  25. Lei B, Liu Y, Ye Z, Shi C (2004) A novel white light emitting long-lasting phosphor. Chin Chem Lett 15(003):335–338

    CAS  Google Scholar 

  26. http://www.concretenetwork.com/concrete/exposedaggregate/glow-in-the-dark.html

  27. http://jalopnik.com/a-mexican-scientist-says-he-figured-out-how-to-make-glo-1778638553

  28. Wang X, Dong S, Ashour A, Zhang W, Han B (2020) Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Constr Build Mater 240:117942

    Article  CAS  Google Scholar 

  29. Yamanashi Y, Sakai S, Saito K. Noctilucent and luminous artificial stone and its structure. CN1414061A, China

  30. Saleem M, Blaisi NI (2019) Development, testing, and environmental impact assessment of glow-in-the-dark concrete. Struct Concrete 20(5):1792–1803

    Article  Google Scholar 

  31. Sikandar MA, Ahmad W, Khan MH, Ali F, Waseem M (2019) Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Constr Build Mater 228:116823

    Article  CAS  Google Scholar 

  32. Gao Y, He B, Xiao M, Fang Z, Dai K (2018) Study on properties and mechanisms of luminescent cement-based pavement materials with super-hydrophobic function. Constr Build Mater 165:548–559

    Article  CAS  Google Scholar 

  33. He B, Gao Y, Qu L, Duan K, Zhou W, Pei G (2019) Characteristics analysis of self-luminescent cement-based composite materials with self-cleaning effect. J Clean Prod 225:1169–1183

    Article  CAS  Google Scholar 

  34. http://www.globalconstructionreview.com/innovation/mexican-scientist-creates-glo7w-da7rk-ceme7nt/

  35. https://www.studioroosegaarde.net/cn/project/van-gogh-path

  36. https://www.studioroosegaarde.net/cn/project/glowing-lines

  37. Thur A, Furbo S, Shah LJ (2006) Energy savings for solar heating systems. Sol Energy 80(11):1463–1474

    Article  Google Scholar 

  38. N’Tsoukpoe KE, Liu H, Pierres NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13(9):2385–2396

    Article  CAS  Google Scholar 

  39. Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31(14):2805–2822

    Article  CAS  Google Scholar 

  40. Forster M (2004) Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy. Energy 29(5/6):789–799

    Article  CAS  Google Scholar 

  41. Ma Q, Luo L, Wang RZ, Sauce G (2009) A review on transportation of heat energy over long distance: exploratory development. Renew Sustain Energy Rev 13(6/7):1532–1540

    Article  Google Scholar 

  42. Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742

    Article  CAS  Google Scholar 

  43. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  CAS  Google Scholar 

  44. Verma P, Varun, Singal SK (2008) Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew Sustain Energy Rev 12(4):999–1031

    Article  CAS  Google Scholar 

  45. Shafigh P, Asadi I, Mahyuddin N (2018) Concrete as a thermal mass material for building applications—a review. J Build Eng 19:14–25

    Article  Google Scholar 

  46. Ling T, Poon CS (2013) Use of phase change materials for thermal energy storage in concrete: an overview. Constr Build Mater 46:55–62

    Article  Google Scholar 

  47. D’Alessandro A, Pisello AL, Fabiani C, Ubertini F, Cabeza LF, Cotana F (2018) Multifunctional smart concretes with novel phase change materials: mechanical and thermo-energy investigation. Appl Energy 212:1448–1461

    Article  Google Scholar 

  48. Pillai KK, Brinkworth BJ (1976) The storage of low grade thermal energy using phase change materials. Appl Energy 2(3):205–216

    Article  CAS  Google Scholar 

  49. Telkes M (1980) Thermal energy storage in salt hydrates. Sol Energy Mater 2(4):381–393

    Article  CAS  Google Scholar 

  50. Hunger M, Entrop AG, Mandilaras I, Brouwers HJH, Founti M (2009) The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement Concrete Compos 31(10):731–743

    Article  CAS  Google Scholar 

  51. Rhafiki TE, Kousksou T, Jamil A, Jegadheeswaran S, Pohekar SD, Zeraouli Y (2011) Crystallization of PCMs inside an emulsion: supercooling phenomenon. Sol Energy Mater Solar Cells 95(9):2588–2597

    Article  CAS  Google Scholar 

  52. Medrano M, Yilmaz S, Sheth FK, Martorell I, Paksoy H, Cabeza LF. Salt water solutions as PCM for cooling applications. EuroSun 2010.

  53. Kousksou T, Jamil A, Rhafiki TE, Zeraouli Y (2010) Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol C 94(12):2158–2165

    Article  CAS  Google Scholar 

  54. He B, Martin V, Setterwall F (2004) Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy 29(11):1785–1804

    Article  CAS  Google Scholar 

  55. Yuan Y, Zhang N, Tao W, Cao X, He Y (2014) Fatty acids as phase change materials: a review. Renew Sustain Energy Rev 29:482–498

    Article  CAS  Google Scholar 

  56. Kenar JA (2014) The use of lipids as phase change materials for thermal energy storage. Lipid Tech 26(7):154–156

    Article  CAS  Google Scholar 

  57. Cellat K, Beyhan B, Gungor C, Konuklu Y, Karahan O, Dundar C, Paksoy H (2015) Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energy Build 106:156–163

    Article  Google Scholar 

  58. Jeong SG, Jeon J, Chung O, Kim S, Kim S (2013) Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J Therm Anal Calorim 114(2):689–698

    Article  CAS  Google Scholar 

  59. Hawes DW, Feldman D (1992) Absorption of phase change materials in concrete. Sol Energ Mater Sol C 27(2):91–101

    Article  CAS  Google Scholar 

  60. Hawes DW, Banu D, Feldman D (1992) The stability of phase change materials in concrete. Sol Energy Mater Sol Cell 27(2):103–118

    Article  CAS  Google Scholar 

  61. Hadjieva M, Stoykov R, Filipova T (2000) Composite salt-hydrate concrete system for building energy storage. Renew Energy 19(1):111–115

    Article  CAS  Google Scholar 

  62. Zhang D, Li Z, Zhou J, Wu K (2004) Development of thermal energy storage concrete. Cement Concrete Res 34(6):927–934

    Article  CAS  Google Scholar 

  63. Bentz DP, Turpin R, Bentz D, Turpin R (2007) Potential applications of phase change materials in concrete technology. Cement Concrete Compos 29(7):527–532

    Article  CAS  Google Scholar 

  64. Suttaphakdee P, Dulsang N, Lorwanishpaisarn N, Kasemsiri P, Chindaprasirt P (2016) Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite. Constr Build Mater 127:475–483

    Article  CAS  Google Scholar 

  65. Han B, Zhang L, Ou J (2017) Smart and multifunctional concrete toward sustainable infrastructures. Springer, Berlin

    Book  Google Scholar 

  66. Xu B, Li Z (2013) Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy 105:229–237

    Article  CAS  Google Scholar 

  67. Cui H, Liao W, Mi X, Lo TY, Chen D (2015) Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials. Energy Build 105:273–284

    Article  Google Scholar 

  68. Cui H, Tang W, Qin Q, Xing F, Liao W, Wen H (2017) Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated pcm by hollow steel ball. Appl Energy 185:107–118

    Article  CAS  Google Scholar 

  69. Li H, Fang GY (2010) Experimental investigation on the characteristics of polyethylene glycol/cement composites as thermal energy storage materials. Chem Eng Technol 33(10):1650–1654

    Article  CAS  Google Scholar 

  70. Cellat K, Beyhan B, Gungor C, Konuklu Y, Karahan O, Dundar C, Paksoy H (2015) Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energ Build 106:156–163

    Article  Google Scholar 

  71. Thiele AM, Wei Z, Falzone G, Young BA, Neithalath N, Sant G, Pilon L (2016) Figure of merit for the thermal performance of cementitious composites containing phase change materials. Cement Concrete Compos 65:214–226

    Article  CAS  Google Scholar 

  72. Jayalath A, San Nicolas R, Sofi M, Shanks R, Ngo T, Aye L, Mendis P (2016) Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Constr Build Mater 120:408–417

    Article  Google Scholar 

  73. Dong Z, Cui H, Tang W, Chen D, Wen H (2016) Development of hollow steel ball macro-encapsulated PCM for thermal energy storage concrete. Materials 9(1):59

    Article  CAS  Google Scholar 

  74. Xu B, Li Z (2014) Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72(1):371–380

    Article  CAS  Google Scholar 

  75. Vieira J, Senff L, Goncalves H, Silva L, Ferreira VM, Labrincha JA (2014) Functionalization of mortars for controlling the indoor ambient of buildings. Energy Build 70:224–236

    Article  Google Scholar 

  76. Ricklefs A, Thiele AM, Falzone G, Sant G, Pilon L (2017) Thermal conductivity of cementitious composites containing microencapsulated phase change materials. Int J Heat Mass Tranf 104:71–82

    Article  CAS  Google Scholar 

  77. Myriam B, Ilyes DZ, Mohamed EM, Amir SL, Michelle S (2019) Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustain Cities Soc 41:455–468

    Google Scholar 

  78. Li M, Wu Z, Tan J (2013) Heat storage properties of the cement mortar incorporated with composite phase change material. Appl Energy 103:393–399

    Article  CAS  Google Scholar 

  79. Dehdezi PK, Hall MR, Dawson AR, Casey SP (2013) Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int J Pavement Eng 14(5–6):449–462

    Article  CAS  Google Scholar 

  80. Jeong SG, Chang SJ, Wi S, Kang Y, Lim JH, Chang JD, Kim S (2016) Energy efficient concrete with n-octadecane/xGnP SSPCM for energy conservation in infrastructure. Constr Build Mater 106:543–549

    Article  CAS  Google Scholar 

  81. Cao VD, Pilehvar S, Salasbringas C, Szczotok AM, Rodriguez JF, Carmona M, Almanasir N, Kjoniksen A (2017) Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers Manag 133:56–66

    Article  CAS  Google Scholar 

  82. Qu Y, Chen J, Liu L, Xu T, Wu H, Zhou X (2020) Study on properties of phase change foam concrete block mixed with paraffin/fumed silica composite phase change material. Renew Energy 150:1127–1135

    Article  CAS  Google Scholar 

  83. Sukontasukkul P, Uthaichotirat P, Sangpet T, Sisomphon K, Newlands MD, Siripanichgorn A, Chindaprasirt P (2019) Thermal properties of lightweight concrete incorporating high contents of phase change materials. Constr Build Mater 207:431–439

    Article  CAS  Google Scholar 

  84. Essid N, Eddhahak-Ouni A, Neji J (2020) Experimental and numerical thermal properties investigation of cement-based materials modified with PCM for building construction use. J Archit Eng 26(3):04020018

    Article  Google Scholar 

  85. Cabeza LF, Castellon C, Nogues M, Medrano M, Leppers R, Zubillaga O (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energy Build 39(2):113–119

    Article  Google Scholar 

  86. Castellon C, Castell A, Medrano M, Martorell I, Cabeza LF (2009) Experimental study of PCM inclusion in different building envelopes. J Sol Energy Eng 131(4):143–155

    Article  CAS  Google Scholar 

  87. Cabeza LF, Navarro L, Pisello AL, Olivieri L, Bartolome C, Sanchez JS, Álvarez S, Tenorio JA (2020) Behaviour of a concrete wall containing micro-encapsulated PCM after a decade of its construction. Sol Energy 200:108–113

    Article  Google Scholar 

  88. Jiang H, Zhang J, Zhou F, Wang Y (2020) Optimization of PCM coating and its influence on the temperature field of CRTSII ballastless track slab. Constr Build Mater 236:117498

    Article  CAS  Google Scholar 

  89. Pomianowski M, Heiselberg P, Zhang Y (2013) Review of thermal energy storage technologies based on PCM application in buildings. Energy Build 67:56–69

    Article  Google Scholar 

  90. Menoufi K, Castell A, Farid MM, Boer D, Cabeza LF (2013) Life cycle assessment of experimental cubicles including PCM manufactured from natural resources (esters): a theoretical study. Renew Energy 51:398–403

    Article  Google Scholar 

  91. Wen S, Chung DDL (2000) Seebeck effect in steel fiber reinforced cement. Cement Concrete Res 30(4):661–664

    Article  CAS  Google Scholar 

  92. Cai H, Cui D, Li Y, Chen X, Zhang L, Sun J (2013) Apparatus for measuring the Seebeck coefficients of highly resistive organic semiconducting materials. Rev Sci Instrum 84:044703

    Article  CAS  Google Scholar 

  93. Dollfus P, Nguyen VH, Saint-Martin J (2015) Thermoelectric effects in graphene nanostructures. J Phys-Condens Mater 27(13):133204

    Article  CAS  Google Scholar 

  94. Wen S, Chung DDL (2000) Cement as a thermoelectric material. J Mater Res 15(12):2844–2848

    Article  CAS  Google Scholar 

  95. Wang Z, Wang Z, Ning M, He J, He Y (2018) Seebeck effect of thermoelectric mortar and enhancement of its Seebeck effect. J Build Mater 21(5):701–706

    CAS  Google Scholar 

  96. Singh VP, Kumar M, Srivastava RS, Vaish R (2021) Thermoelectric energy harvesting using cement-based composites: a review. Mater Today Energy 21:100714

    Article  CAS  Google Scholar 

  97. Guerrero VH, Wang S, Wen S, Chung DDL (2002) Thermoelectric property tailoring by composite engineering. J Mater Sci 37(19):4127–4136

    Article  CAS  Google Scholar 

  98. Yao W, Chen B, Wu K (2003) Smart behaviour of carbon fiber reinforced cement-based composite. J Mater Sci Technol 19(3):239–242. https://doi.org/10.1023/A:1020083718789

    Article  CAS  Google Scholar 

  99. Li W, Liao X, Ji T, Zhang X, Zhang X (2017) Thermoelectric property of cement composites with MnO2. J Build Mater 20(5):770–773

    Article  Google Scholar 

  100. Demirel B, Yazicioglu S (2008) Thermoelectric behavior of carbon fiber reinforced lightweight concrete with mineral admixtures. New Carbon Mater 23(001):21–24

    Article  CAS  Google Scholar 

  101. Wei J, Hao L, He GP, Yang C (2013) Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca3CO4O9. Appl Mech Mater 320:354–357

    Article  CAS  Google Scholar 

  102. Wei J, Nie Z, He G, Hao L, Zhao L, Zhang Q (2014) Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites. RSC Adv 4(89):48128–48134

    Article  CAS  Google Scholar 

  103. Wei J, Zhao L, Zhang Q, Nie Z, Hao L (2018) Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting. Energy Build 159:66–74

    Article  Google Scholar 

  104. Wen S, Chung DDL (2002) Thermoelectric behavior of carbon-cement composites. Carbon 40(13):2495–2497

    Article  CAS  Google Scholar 

  105. Cao H, Yao W, Qin J (2011) Seebeck effect in graphite-carbon fiber cement based composite. Adv Mater Res 177:566–569

    Article  CAS  Google Scholar 

  106. Wen S, Chung DDL (2002) Origin of the thermoelectric behavior of steel fiber cement paste. Cement Concrete Res 32(5):821–823

    Article  CAS  Google Scholar 

  107. Wei J, Zhang Q, Zhao L, Hao L, Yang C (2016) Enhanced thermoelectric properties of carbon fiber reinforced cement composites. Ceram Int 42(10):11568–11573

    Article  CAS  Google Scholar 

  108. Ji T, Zhang X, Zhang X, Zhang Y, Li W (2018) Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites. J Mater Civ Eng 30(9):04018224.1-04018224.8

    Article  Google Scholar 

  109. Ji T, Zhang X, Li W (2016) Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings. Constr Build Mater 115:576–581

    Article  CAS  Google Scholar 

  110. Zuo J, Yao W, Qin J (2013) Enhancing the thermoelectric properties in carbon fiber/cement composites by using steel slag. Key Eng Mater 539:103–107

    Article  CAS  Google Scholar 

  111. Wei J, Fan Y, Zhao L, Xue F, Hao L, Zhang Q (2018) Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear. Ceram Int 44(6):5829–5833

    Article  CAS  Google Scholar 

  112. Wang Z, Wang Z, Ning M, Tang S, He Y (2017) Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system. Ceram Int 43(12):8685–8693

    Article  CAS  Google Scholar 

  113. Yao W, Xia Q (2014) Preparation and thermoelectric properties of bismuth telluride-carbon fiber reinforced cement composites. J Funct Mater 15:15134–15137

    Google Scholar 

  114. Wen S, Chung DDL (2001) Effect of carbon fiber grade on the electrical behavior of carbon fiber reinforced cement. Carbon 39(3):369–373

    Article  CAS  Google Scholar 

  115. Wen S, Chung DDL (2004) Erratum to “Seebeck effect in carbon fiber reinforced cement.” Cement Concrete Res 34(12):2341–2342

    Article  CAS  Google Scholar 

  116. Wen S, Chung DDL (2004) Effect of fiber content on the thermoelectric behavior of cement. J Mater Sci 39(13):4103–4106. https://doi.org/10.1023/B:JMSC.0000033389.83459.8f

    Article  CAS  Google Scholar 

  117. Chung DDL (2004) Electrically conductive cement-based materials. Adv Cement Res 16(4):167–176

    Article  CAS  Google Scholar 

  118. Ghahari SA, Ghafari E, Lu N (2017) Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting. Constr Build Mater 146:755–763

    Article  CAS  Google Scholar 

  119. Pichor W, Frąc M (2012) Electric and thermoelectric properties of cement composites with expanded graphite. Brittle Matrix Compos 2012:43–50

    Article  Google Scholar 

  120. Cao J, Chung DDL (2005) Role of moisture in the Seebeck effect in cement-based materials. Cement Concrete Res 35(4):810–812

    Article  CAS  Google Scholar 

  121. Wei J, Zhang Q, Zhao L, Hao L, Nie Z (2017) Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites. Ceram Int 43(14):10763–10769

    Article  CAS  Google Scholar 

  122. Wei J, Hao L, He G, Yang C (2014) Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface. Ceram Int 40(6):8261–8263

    Article  CAS  Google Scholar 

  123. Zuo J, Yao W, Qin J, Cao H (2011) Measurements of thermoelectric behavior and microstructure of carbon nanotubes/carbon fiber-cement based composite. Key Eng Mater 492:242–245

    Article  CAS  Google Scholar 

  124. Zuo J, Yao W, Wu K (2015) Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites. Fuller Nanotub Carbon Nanostruct 23(5):383–391

    Article  CAS  Google Scholar 

  125. Yao W, Zuo J, Wu K (2013) Microstructure and thermoelectric properties of carbon nanotube-carbon fiber/cement composites. J Funct Mater 44(13):1924–1927

    CAS  Google Scholar 

  126. Wen S, Chung DDL (2000) Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers. Cement Concrete Res 30(8):1295–1298

    Article  CAS  Google Scholar 

  127. Ghosh S, Harish S, Rocky KA, Ohtaki M, Saha BB (2019) Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting. Energy Build 202:109419

    Article  Google Scholar 

  128. Wei J, Wang Y, Li X, Jia Z, Qiao S, Zhang Q, Du J (2020) Effect of porosity and crack on the thermoelectric properties of expanded graphite/carbon fiber reinforced cement-based composites. Int J Energy Res 44(8):6885–6893

    Article  CAS  Google Scholar 

  129. Lee J, Kim DH, Lee S, Lim JK (2014) Fundamental study of energy harvesting using thermoelectric effect on concrete structure in road. Adv Mater Res 1044–1045:332–337

    Article  Google Scholar 

  130. Cuadras A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity. Sensors Actuat A-Phys 158(1):132–139

    Article  CAS  Google Scholar 

  131. Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric energy conversion: optimization principles. IEEE T Ultrason Ferroelectr 55(3):538–551

    Article  Google Scholar 

  132. Hu Y (2006) Researches on PLCT pyroelectric materials used for infrared detectors. Dissertation for the Master Degree. Hangzhou University of Science and Technology, China

  133. Ghanemotlagh R, Kroener M, Goldschmidtboeing F, Danilewsky AN, Woias P (2018) A dynamic method for the measurement of pyroelectric properties of materials. Smart Mater Struct 27(8):084004

    Article  Google Scholar 

  134. Bhat KN, Batra AK, Bhattacharjee S, Taylor RW (2010) Effect of volcanic-ash on the pyroelectric and dielectric properties of Portland cement. In: Proceedings SPIE, p 7780

  135. Batra AK, Bhattacharjee S, Chilvery A, Aggarwal MD, Edwards M, Bhalla AS (2011) Simulation of energy harvesting from roads via pyroelectricity. J Photon Energy 1(1):014001

    Article  CAS  Google Scholar 

  136. Bhattacharjee S, Batra AK, Cain J (2011) Carbon nano fiber reinforced cement composite for energy harvesting road. In: Green streets and highways conference, ASCE

  137. Bhattacharjee S, Batra AK, Cain J (2011) Energy harvesting from pavements using pyroelectric single crystal and nano-composite based smart materials. In: T & DI congress, ASCE

  138. Bhattacharjee S, Batra AK, Meseret S, Cain J (2011) High-performance single and polycrystal-based pyroelectric smart materials for energy harvesting from pavements. Transport Res Rec 2252:75–82

    Article  Google Scholar 

  139. Srikanth KS, Patel S, Vaish R (2018) Functional cementitious composites for pyroelectric applications. J Electron Mater 47(4):2378–2385

    Article  CAS  Google Scholar 

  140. Guan Z, Zhang Z, Jiao J (2011) Physical properties of inorganic materials. Tsinghua University Press, Beijing

    Google Scholar 

  141. Sun M, Li Z, Song X (2004) Piezoelectric effect of hardened cement paste. Cement Concrete Compos 26(6):717–720

    Article  CAS  Google Scholar 

  142. Chen J, Qiu Q, Han Y, Lau D (2018) Piezoelectric materials for sustainable building structures: principles and applications. Renew Sustain Energy Rev 101:14–25

    Article  CAS  Google Scholar 

  143. Huang S (2005) Fabrication and properties of cement-based piezoelectric composites. Dissertation for the Doctoral Degree. Wuhan University of Technology, China

  144. Zhang L, Zheng Q, Dong X, Yu X, Wang Y, Han B (2020) Tailoring sensing properties of smart cementitious composites based on excluded volume theory and electrostatic self-assembly. Constr Build Mater 256:119452

    Article  CAS  Google Scholar 

  145. Dong S, Zhou D, Li Z, Yu X, Han B (2019) Super-fine stainless wires enabled multifunctional and smart reactive powder concrete. Smart Mater Struct 28(12):125009

    Article  CAS  Google Scholar 

  146. Wen S, Chung DDL (2002) Piezoelectric cement-based materials with large coupling and voltage coefficients. Cement Concrete Res 32(3):335–339

    Article  CAS  Google Scholar 

  147. Ahmed MA, Hassanean YA, Assaf KA, El-Dek SI, Shawkey MA (2015) Piezoelectric response of MWCNTs/cement nanocomposites. Microelectron Eng 146:53–56

    Article  CAS  Google Scholar 

  148. Zhang Y, Liu Z, Zhang W (2018) Improved output voltage of 0–3 cementitious piezoelectric composites with basalt fibers. Ceram Int 45(5):6577–6580

    Article  CAS  Google Scholar 

  149. Cheng X, Huang S, Chang J, Li Z (2007) Piezoelectric, dielectric, and ferroelectric properties of 0–3 ceramic/cement composites. J Appl Phys 101(9):094110

    Article  CAS  Google Scholar 

  150. Wang F, Wang H, Song Y, Sun H (2012) High piezoelectricity 0–3 cement-based piezoelectric composites. Mater Lett 76:208–210

    Article  CAS  Google Scholar 

  151. Rianyoi R, Potong R, Ngamjarurojana A, Chaipanich A (2016) Microstructure and electrical properties of 0–3 connectivity barium titanate-Portland cement composite with 40% barium titanate content. Ferroelectrics Lett 43(1–3):59–64

    Article  CAS  Google Scholar 

  152. Xu D, Cheng X, Huang S (2015) Investigation of inorganic fillers on properties of 2–2 connectivity cement/polymer based piezoelectric composites. Constr Build Mater 94:678–683

    Article  CAS  Google Scholar 

  153. Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10(3):1935–1954

    Article  CAS  Google Scholar 

  154. Jarupoom P, Jaita P, Yimnirun R, Rujijanagul G, Cann DP (2015) Enhanced piezoelectric properties near the morphotropic phase boundary in lead-free (1–x)(Bi0.5K0.5)TiO3-xBi(Ni0.5Ti0.5)O3 ceramics. Curr Appl Phys 15(11):1521–1528

    Article  Google Scholar 

  155. Zhang S, Shrout TR, Nagata H, Hiruma Y, Takenaka T (2007) Piezoelectric properties in (K0.5Bi0.5) TiO3-(Na0.5Bi0.5) TiO3-BaTiO3 lead-free ceramics. IEEE Trans Ultrason Ferroelectr 54(5):910–917

    Article  Google Scholar 

  156. Liu L, Fan H (2006) Influence of sintering temperatures on the electrical property of bismuth sodium titanate based piezoelectric ceramics. J Electroceram 16(4):293–296

    Article  CAS  Google Scholar 

  157. Liu L, Knapp M, Ehrenberg H, Fang L, Fan H, Schmitt LA, Fuess H, Hoelzel M, Dammk H, Thi MP, Hinterstein M (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J Eur Ceram Soc 37(4):1387–1399

    Article  CAS  Google Scholar 

  158. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composite. Mater Res Bull 13(5):525–536

    Article  CAS  Google Scholar 

  159. Potong R, Rianyoi R, Ngamjarurojana A, Chaipanich A (2015) Acoustic and dielectric properties of 0–3 bismuth sodium titanate-bismuth potassium titanate-barium titanate/cement composites. Ferroelectr Lett 43:77–81

    Article  CAS  Google Scholar 

  160. Chaipanich A, Rianyoi R, Potong R, Jaitanong N (2014) Aging of 0–3 piezoelectric PZT ceramic-Portland cement composites. Ceram Int 40(8):13579–13584

    Article  CAS  Google Scholar 

  161. Chaipanich A, Rianyoi R, Potong R, Jaitanong N, Chindaprasirt P (2013) Compressive strength and microstructure of 0–3 lead zirconate titanate ceramic-Portland cement composites. Ferroelectrics 457(1):53–61

    Article  CAS  Google Scholar 

  162. Zhu J, Wang Z, Zhu X, Yang B, Fu C (2018) Theoretical and experimental study on the effective piezoelectric properties of 1–3 type cement-based piezoelectric composites. Materials 11(9):1698

    Article  CAS  Google Scholar 

  163. Chaipanich A, Potong R, Rianyoi R, Jareansuk L, Jaitanong N, Yimnirun R (2012) Dielectric and ferroelectric hysteresis properties of 1–3 lead magnesium niobate-lead titanate ceramic/Portland cement composites. Ceram Int 38:S255–S258

    Article  CAS  Google Scholar 

  164. Xu D, Cheng X, Huang S, Jiang M (2009) Electromechanical properties of 2–2 cement based piezoelectric composite. Curr Appl Phys 9(4):816–819

    Article  Google Scholar 

  165. Chaipanich A, Rianyoi R, Potong R, Suriya W, Jaitanong N, Chindaprasirt P (2012) Dielectric properties of 2–2 PMN-PT/cement composites. Ferroelectr Lett 39:76–80

    Article  CAS  Google Scholar 

  166. Inthong S, Eitssayeam S, Tontrakoon J, Tunkasiri T (2019) Piezoceramic-polymer and piezoceramic-cement composites: a brief review. J Met Mater Min 29(2):21–26

    CAS  Google Scholar 

  167. Chen J, Qiu Q, Han Y, Lau D (2019) Piezoelectric materials for sustainable building structures: principles and applications. Renew Sustain Energy Rev 101:14–25

    Article  CAS  Google Scholar 

  168. Ahmad S, Mujeebu MA, Farooqi MA (2019) Energy harvesting from pavements and roadways: a comprehensive review of technologies, materials, and challenges. Int J Energy Res 43(6):1974–2015

    Article  CAS  Google Scholar 

  169. Fuller WB, Thompson SE (1907) The laws of proportioning concrete. Trans Am Soc Civ Eng 33:67–143

    Article  Google Scholar 

  170. Zhang Y, Liu Z, Ding F, Zhang W (2018) Effect of piezoelectric ceramic particles size gradation on piezoelectric properties of 0–3 cement-based piezoelectric composites. Smart Mater Struct 27(8):085029

    Article  Google Scholar 

  171. Xu D, Cheng X, Geng H, Lu F, Haung S (2015) Design, fabrication and properties of 1–3 piezoelectric ceramic composites with varied piezoelectric phase distribution. Ceram Int 41(8):9433–9442

    Article  CAS  Google Scholar 

  172. Xu D, Cheng X, Banerjee S, Huang S (2014) Design, fabrication, and properties of 2–2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution. J Appl Phys 116(24):244103–244103

    Article  CAS  Google Scholar 

  173. Chaipanich A, Jaitanong N (2009) Effect of PZT particle size on the electromechanical coupling coefficient of 0–3 PZT-cement composites. Ferroelectr Lett 36(1–2):37–44

    Article  CAS  Google Scholar 

  174. Huang S, Chang J, Lu L, Liu F, Ye Z, Cheng X (2006) Preparation and polarization of 0–3 cement based piezoelectric composites. Mater Res Bull 41(2):291–297

    Article  CAS  Google Scholar 

  175. Chaipanich A, Jaitanong N (2008) Effect of poling temperature on piezoelectric properties of 0–3 PZT-Portland cement composites. Ferroelectr Lett 35(3–4):73–78

    Article  CAS  Google Scholar 

  176. Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Ngamjarurojana A, Chaipanich A (2011) Dielectric and ferroelectric properties of 1–3 barium titanate–Portland cement composites. Curr Appl Phys 11(3):S48–S51

    Article  Google Scholar 

  177. Gong H, Zhang Y, Quan J, Che S (2011) Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr Appl Phys 11(3):653–656

    Article  Google Scholar 

  178. Gong H, Li Z, Zhang Y, Fan R (2009) Piezoelectric and dielectric behavior of 0–3 cement-based composites mixed with carbon black. J Eur Ceram Soc 29(10):2013–2019

    Article  CAS  Google Scholar 

  179. Huang S, Li X, Liu F, Chang J, Xu D, Cheng X (2009) Effect of carbon black on properties of 0–3 piezoelectric ceramic/cement composites. Curr Appl Phys 9(6):1191–1194

    Article  Google Scholar 

  180. Chaipanich A, Jaitanong N, Tunkasiri T (2007) Fabrication and properties of PZT-ordinary Portland cement composites. Mater Lett 61(30):5206–5208

    Article  CAS  Google Scholar 

  181. Chaipanich A (2007) Dielectric and piezoelectric properties of PZT-silica fume cement composites. Curr Appl Phys 7(5):532–536

    Article  Google Scholar 

  182. Pan H, Lin D, Yang R (2016) High piezoelectric and dielectric properties of 0–3 PZT/cement composites by temperature treatment. Cement Concrete Comp 72:1–8

    Article  CAS  Google Scholar 

  183. Potong R, Rianyoi R, Ngamjarurojana A, Yimnirun R, Guo R, Bhalla AS, Chaipanich A (2013) Acoustic and piezoelectric properties of 0–3 barium zirconate titanate-Portland cement composites-effects of BZT content and particle size. Ferroelectrics 455(1):69–76

    Article  CAS  Google Scholar 

  184. Potong R, Rianyoi R, Chaipanich A (2011) Dielectric properties of lead-free composites from 0–3 barium zirconate titanate-Portland cement composites. Ferroelectr Lett 38(1–3):18–23

    Article  CAS  Google Scholar 

  185. Chaipanich A, Rujijanagul G, Tunkasiri T (2009) Properties of Sr- and Sb-doped PZT-Portland cement composites. Appl Phys A 94(2):329–337

    Article  CAS  Google Scholar 

  186. Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Chaipanich A (2011) Dielectric, ferroelectric and piezoelectric properties of 0–3 barium titanate-portland cement composites. Appl Phys A 104(2):661–666

    Article  CAS  Google Scholar 

  187. Wittinanon T, Rianyoi R, Ngamjarurojana A, Chaipanich A (2020) Effect of polyvinylidene fluoride on the acoustic impedance matching, poling enhancement and piezoelectric properties of 0–3 smart lead-free piezoelectric Portland cement composites. J Electroceram 44:232–241

    Article  CAS  Google Scholar 

  188. Li Z, Gong H, Zhang Y (2009) Fabrication and piezoelectricity of 0–3 cement based composite with nano-PZT powder. Curr Appl Phys 9(3):588–591

    Article  Google Scholar 

  189. Cheng X, Huang S, Chang J, Xu R, Liu F, Lu L (2005) Piezoelectric and dielectric properties of piezoelectric ceramic-sulphoaluminate cement composites. J Eur Ceram Soc 25(13):3223–3228

    Article  CAS  Google Scholar 

  190. Huang S, Chang J, Xu R, Liu F, Lu L, Ye Z, Cheng X (2004) Piezoelectric properties of 0–3 PZT/sulfoaluminate cement composites. Smart Mater Struct 13(2):270–274

    Article  CAS  Google Scholar 

  191. Jaitanong N, Chaipanich A, Tunkasiri T (2008) Properties 0–3 PZT-Portland cement composites. Ceram Int 34(4):793–795

    Article  CAS  Google Scholar 

  192. Li Z, Dong B, Zhang D (2005) Influence of polarization on properties of 0–3 cement-based PZT composites. Cement Concrete Compos 27(1):27–32

    Article  CAS  Google Scholar 

  193. Santos JA, Sanches AO, Akasaki JL, Tashima MM, Longo E, Malmonge JA (2020) Influence of PZT insertion on Portland cement curing process and piezoelectric properties of 0–3 cement-based composites by impedance spectroscopy. Constr Build Mater 238:117675

    Article  CAS  Google Scholar 

  194. Pan HH, Wang C, Tia M, Su Y (2020) Influence of water-to-cement ratio on piezoelectric properties of cement-based composites containing PZT particles. Constr Build Mater 239:117858

    Article  CAS  Google Scholar 

  195. Banerjee S, Cookchennault KA (2014) Influence of aluminium inclusions on dielectric properties of three-phase PZT-cement-aluminium composites. Adv Cem Res 26(2):63–76

    Article  CAS  Google Scholar 

  196. Jaitanong N, Yimnirun R, Zeng H, Li G, Yin Q, Chaipanich A (2014) Piezoelectric properties of cement based/PVDF/PZT composites. Mater Lett 130:146–149

    Article  CAS  Google Scholar 

  197. Potong R, Rianyoi R, Ngamjarurojana A, Chaipanich A (2017) Microstructure and performance of 1–3 connectivity environmental friendly lead-free BNBK-Portland cement composites. Mater Res Bull 90:59–65

    Article  CAS  Google Scholar 

  198. Rianyoi R, Potong R, Yimnirun R, Guo R, Bhalla A, Chaipanich A (2013) Electromechanical coupling coefficient of 1–3 connectivity barium titanate-Portland cement composites. Integr Ferroelectr 148(1):138–144

    Article  CAS  Google Scholar 

  199. Cheng X, Xu D, Lu L, Huang S, Jiang M (2010) Performance investigation of 1–3 piezoelectric ceramic-cement composite. Mater Chem Phys 121(1–2):63–69

    Article  CAS  Google Scholar 

  200. Lam K, Chan H (2015) Piezoelectric cement-based 1–3 composites. Appl Phys A 81(7):1451–1454

    Article  CAS  Google Scholar 

  201. Zhang F, Feng P, Wang T, Chen J (2019) Mechanical-electric response characteristics of 1–3 cement based piezoelectric composite under impact loading. Constr Build Mater 228:116781

    Article  CAS  Google Scholar 

  202. Sanches AO, Teixeira GF, Zaghete MA, Longo E, Malmonge JA, Silva MJ, Sakamoto WK (2019) Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1–0–3 polyurethane/cement-based piezo composite. Mater Res Bull 119:110541

    Article  CAS  Google Scholar 

  203. Rianyoi R, Potong R, Ngamjarurojana A, Yimnirun R, Guo R, Bhalla AS, Chaipanich A (2014) Acoustic and electrical properties of 1–3 connectivity bismuth sodium titanate-Portland cement composites. Mater Res Bull 60:353–358

    Article  CAS  Google Scholar 

  204. Rianyoi R, Potong R, Ngamjarurojana A, Yimnirun R, Guo R, Bhalla AS, Chaipanich A (2013) Acoustic, dielectric and piezoelectric properties of 1–3 connectivity barium titanate-Portland cement composites. Ferroelectrics 452(1):76–83

    Article  CAS  Google Scholar 

  205. Xu D, Cheng X, Guo X, Huang S (2015) Design, fabrication and property investigation of cement/polymer based 1–3 connectivity piezo-damping composites. Constr Build Mater 84:219–223

    Article  Google Scholar 

  206. Li Z, Huang S, Qin L, Cheng X (2007) An investigation on 1–3 cement based piezoelectric composites. Smart Mater Struct 16(4):999–1005

    Article  CAS  Google Scholar 

  207. Xu D, Qin L, Huang S, Cheng X (2011) An exploration of 1–3 cement/epoxy resin based piezoelectric composite in cement hydration reaction process monitoring. Adv Mater Res 306–307:839–843

    Google Scholar 

  208. Huang S, Ye Z, Wang S, Xu D, Chang J, Cheng X (2007) Fabrication and properties of 1–3 cement based piezoelectric composites. Acta Mater Comp Sin 24(1):122–126

    Google Scholar 

  209. Cheng X, Huang S, Hu Y, Wang S (2006) Effect of humidity of performance of 1–3 cement-based piezoelectric composites. J Chin Ceram Soc 34(5):626–629

    CAS  Google Scholar 

  210. Chaipanich A, Rianyoi R, Potong R, Penpokai P, Chindaprasirt P (2013) Dielectric and piezoelectric properties of 2–2 PZT-Portland cement composites. Integr Ferroelectr 149(1):89–94

    Article  CAS  Google Scholar 

  211. Huang S, Xu D, Jun C, Ye Z, Cheng X (2007) Influence of water-cement ratio on the properties of 2–2 cement based piezoelectric composite. Mater Lett 61(30):5217–5219

    Article  CAS  Google Scholar 

  212. Potong R, Rianyoi R, Ngamjarurojana A, Chaipanich A (2014) Fabrication and performance investigation of 2–2 connectivity lead-free barium zirconate titanate-Portland cement composites. Ceram Int 40(6):8723–8728

    Article  CAS  Google Scholar 

  213. Rianyoi R, Potong R, Ngamjarurojana A, Chaipanich A (2018) Dielectric and piezoelectric properties of 2–2 connectivity lead-free piezoelectric ceramic Bi0.5Na0.5TiO3/Portland cement composites. Ceram Int 44:S220–S223

    Article  CAS  Google Scholar 

  214. Xu D, Cheng X, Banerjee S, Wang L, Huang S (2015) Dielectric, piezoelectric and damping properties of novel 2–2 piezoelectric composites. Smart Mater Struct 24(2):025003

    Article  CAS  Google Scholar 

  215. Feng P, Cheng W, Wang T, Chen J (2019) Study on mechanical-electrical response characteristics of 2–2 cement-based piezoelectric composites. In: 14th Symposium on piezoelectrcity, acoustic waves and device applications (SPAWDA), IEEE

  216. http://www.treehugger.com/cars/see-innowattech-collect-energy-from-the-road-in-action.html

  217. http://inhabitat.com/new-piezoelectric-railways-harvest-energy-from-passing-trains/

  218. http://newatlas.com/piezoelectric-road-harvests-traffic-energy-to-generate-electricity/10568/

  219. http://www.greenprophet.com/2009/10/innowattech-israel-road-energy/

  220. Han B, Ou J (2007) Embedded piezoresistive cement-based stress/strain sensor. Sensors Actuat A-Phys 138(2):294–298

    Article  CAS  Google Scholar 

  221. Han B, Guan X, Ou J (2007) Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors. Sensors Actuat A-Phys 135(2):360–369

    Article  CAS  Google Scholar 

  222. Han B, Yu X, Ou J (2014) Self-sensing concrete in smart structures. Elsevier, Amsterdam

    Google Scholar 

  223. Han B, Zhang L, Zhang C, Wang Y, Yu X, Ou J (2016) Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Constr Build Mater 125:479–489

    Article  CAS  Google Scholar 

  224. Han B, Yu X, Kwon E (2009) A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 20:445501

    Article  Google Scholar 

  225. Han B, Ding S, Wang J, Ou J (2019) Nano-engineered cementitious composites: principles and practices. Springer, Berlin

    Book  Google Scholar 

  226. Han B, Zhang L, Zeng S, Dong S, Yu X, Yang R, Ou J (2017) Nano-core effect in nano-engineered cementitious composites. Compos A Appl Sci Manuf 95:100–109

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Science Foundation of China (51908103 and 51978127) and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sufen Dong or Baoguo Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dong, S., Ashour, A. et al. Energy-harvesting concrete for smart and sustainable infrastructures. J Mater Sci 56, 16243–16277 (2021). https://doi.org/10.1007/s10853-021-06322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06322-1

Navigation