Skip to main content
Log in

Magnetic and phonon transport properties of two-dimensional room-temperature ferromagnet VSe2

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The room-temperature intrinsic ferromagnetism of monolayer VSe2 with a van der Waals gap provides an exciting opportunity for both the fundamental studies and future low-dimensional spintronic devices. By applying biaxial strain, the tunable electronic, magnetic, and phonon transport properties of the VSe2 monolayer are systematically investigated via first-principle calculations. With in-plane easy magnetization axis, the VSe2 monolayer is always a robust room-temperature ferromagnetic semiconductor in the strain range from −2 to 4%. According to the second-order perturbation theory of spin-orbital coupling, magnetic anisotropy energy is mainly contributed by the interaction between V-\(d_{{xy}}\) orbital and V-\(d_{{x^{2} - y^{2} }}\) orbital. The Curie temperature increases significantly with increasing biaxial strain, from 303 to 469 K. In the meantime, room-temperature lattice thermal conductivity is only 0.682 Wm−1 K−1 and exhibits strong strain dependence. The weakened anharmonic three-phonon scattering rate due to the tradeoff between the number and the strength of scattering channel largely compensates for the influence of the reduced phonon group velocity, causing a monotonous increase in the lattice thermal conductivity with the strain changing. Moreover, the lattice thermal conductivity can be reduced further by limiting the size of monolayer under tensile strain, due to the enhanced size dependence of the thermal conductivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Awschalom DD, Flatté ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153–159. https://doi.org/10.1038/nphys551

    Article  CAS  Google Scholar 

  2. Li XX, Yang JL (2016) First-principles design of spintronics materials. Natl Sci Rev 3:365–381. https://doi.org/10.1093/nsr/nww026

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  4. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett 17:1133–1136. https://doi.org/10.1103/PhysRevLett.17.1133

    Article  CAS  Google Scholar 

  5. Gong C, Li L, Li ZL et al (2017) Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–269. https://doi.org/10.1038/nature22060

    Article  CAS  Google Scholar 

  6. Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273. https://doi.org/10.1038/nature22391

    Article  CAS  Google Scholar 

  7. Huang CX, Feng JS, Wu F, Ahmed D, Huang B, Xiang HJ, Deng KM, Kan EJ (2018) Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc 140:11519–11525. https://doi.org/10.1021/jacs.8b07879

    Article  CAS  Google Scholar 

  8. Jiang Z, Wang P, Xing JP, Jiang X, Zhao JJ (2018) Screening and design of novel 2D ferromagnetic materials with high curie temperature above room temperature. ACS Appl Mater Interfaces 10:39032–39039. https://doi.org/10.1021/acsami.8b14037

    Article  CAS  Google Scholar 

  9. Yamamoto T, Kaminaga K, Saito D, Oka D, Fukumura T (2020) Rock salt structure GdO epitaxial thin film with a high ferromagnetic Curie temperature. Appl Phys Lett 117:052402. https://doi.org/10.1063/5.0017954

    Article  CAS  Google Scholar 

  10. Che XL, Zhang Z, Wang D et al (2020) Observation of above-room-temperature ferromagnetism in chemically stable layered semiconductor RhI3. 2D Mater 7:045034. https://doi.org/10.1088/2053-1583/abb3ba

    Article  Google Scholar 

  11. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. https://doi.org/10.1038/nchem.1589

    Article  Google Scholar 

  12. Fuh HR, Chang CR, Wang YK, Evans RFL, Chantrell RW, Jeng HT (2016) Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te). Sci Rep 6:32625. https://doi.org/10.1038/srep32625

    Article  CAS  Google Scholar 

  13. Tong WY, Gong SJ, Wan XG, Duan CG (2016) Concepts of ferrovalley material and anomalous valley Hall effect. Nat Commun 7:13612. https://doi.org/10.1038/ncomms13612

    Article  CAS  Google Scholar 

  14. Zhuang HL, Hennig RG (2016) Stability and magnetism of strongly correlated single-layer VS2. Phys Rev B 93:054429. https://doi.org/10.1103/PhysRevB.93.054429

    Article  CAS  Google Scholar 

  15. Huang PR, Chen QY, Pal HK, Kindermann M, Cao C, He Y (2016) Correlated electronic structures of group-V transition metal dichalcogenide monolayers from hybrid density-functional calculations. Superlattices Microstruct 100:997–1005. https://doi.org/10.1016/j.spmi.2016.10.063

    Article  CAS  Google Scholar 

  16. Feng YL, Wu XM, Han JC, Gao GY (2018) Robust half-metallicities and perfect spin transport properties in 2D transition metal dichlorides. J Mater Chem C 6:4087–4094. https://doi.org/10.1039/c8tc00443a

    Article  CAS  Google Scholar 

  17. Tian Y, Zhu ZP, Ge ZZ, Sun A, Zhang Q, Huang SL, Li HP, Meng J (2020) Electronic and magnetic properties of 3d transition metal doped MoSe2 monolayer. Phys E 116:113745. https://doi.org/10.1016/j.physe.2019.113745

    Article  CAS  Google Scholar 

  18. Ghasemi majd Z, Taghizadeh SF, Amiri P, Vaseghi B (2019) Half-metallic properties of transition metals adsorbed on WS2 monolayer: a first-principles study. J Magn Magn Mater 481:129–135. https://doi.org/10.1016/j.jmmm.2019.01.063

    Article  CAS  Google Scholar 

  19. Niu Y, Wang P, Zhang MZ (2020) Tuning the spin polarization in monolayer MoS2 through (Y, Yb) co-doping. New J Chem 44:20316–20321. https://doi.org/10.1039/d0nj03788e

    Article  CAS  Google Scholar 

  20. Zhang YL, Zhao YF, Xu YB, He L (2021) Tuning magnetic and optical properties of monolayer WSe2 by doping C, N, P, O, S, F, and Cl: First principles study. Solid State Commun 327:114233. https://doi.org/10.1016/j.ssc.2021.114233

    Article  CAS  Google Scholar 

  21. Ataca C, Sahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999. https://doi.org/10.1021/jp212558p

    Article  CAS  Google Scholar 

  22. Li FY, Tu KX, Chen ZF (2014) Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: a computational exploration. J Phys Chem C 118:21264–21274. https://doi.org/10.1021/jp507093t

    Article  CAS  Google Scholar 

  23. Spiecker E, Schmid AK, Minor AM, Dahmen U, Hollensteiner S, Jäger W (2006) Self-assembled nanofold network formation on layered crystal surfaces during metal Intercalation. Phys Rev Lett 96:086401. https://doi.org/10.1103/PhysRevLett.96.086401

    Article  CAS  Google Scholar 

  24. Esters M, Hennig RG, Johnson DC (2017) Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers. Phys Rev B 96:235147. https://doi.org/10.1103/PhysRevB.96.235147

    Article  Google Scholar 

  25. Li D, Wang X, Kan CM et al (2020) Structural phase transition of multilayer VSe2. ACS Appl Mater Interfaces 12:25143–25149. https://doi.org/10.1021/acsami.0c04449

    Article  CAS  Google Scholar 

  26. Fuh HR, Yan BH, Wu SC, Felser C, Chang CR (2016) Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J Phys 18:113038. https://doi.org/10.1088/1367-2630/18/11/113038

    Article  CAS  Google Scholar 

  27. Gong SJ, Gong C, Suna YY, Tonga WY, Duan CG, Chua JH, Zhang X (2018) Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci USA 115:8511–8516. https://doi.org/10.1073/pnas.1715465115

    Article  CAS  Google Scholar 

  28. Zhang F, Mi WB, Wang XC (2019) Tunable valley and spin splitting in 2H-VSe2/BiFeO3 (111) triferroic heterostructures. Nanoscale 11:10329–10338. https://doi.org/10.1039/c9nr01171d

    Article  CAS  Google Scholar 

  29. Ziman, J.M.: (1960) Electrons and phonons: the theory of transport phenomena in solids, Clarendon Press

  30. Li W, Carrete J, Katcho NA, Mingo N (2014) ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 185:1747–1758. https://doi.org/10.1016/j.cpc.2014.02.015

    Article  CAS  Google Scholar 

  31. Lindsay L, Broido DA, Reinecke TL (2013) First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys Rev Lett 111:025901. https://doi.org/10.1103/PhysRevLett.111.025901

    Article  CAS  Google Scholar 

  32. Balandin AA, Ghosh S, Bao WZ, Teweldebrhan ICD, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer grapheme. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  33. Zhao LD, Lo SH, Zhang YS et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377. https://doi.org/10.1038/nature13184

    Article  CAS  Google Scholar 

  34. Wang FQ, Zhang SH, Yu JB, Wang Q (2015) Thermoelectric properties of single-layered SnSe sheet. Nanoscale 7:15962–15970. https://doi.org/10.1039/c5nr03813h

    Article  CAS  Google Scholar 

  35. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461. https://doi.org/10.1126/science.1158899

    Article  CAS  Google Scholar 

  36. Srinivasan B, Tonquesse SL, Gelle A et al (2020) Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe—an experimental and theoretical appraisal. J Mater Chem A 8:19805–19821. https://doi.org/10.1039/d0ta06710e

    Article  CAS  Google Scholar 

  37. Bourgès C, Srinivasan B, Fontaine B et al (2020) Tailoring the thermoelectric and structural properties of Cu-Sn based thiospinel compounds [CuM1+xSn1-xS4 (M = Ti, V, Cr, Co)]. J Mater Chem C 8:16368–16383. https://doi.org/10.1039/d0tc04393a

    Article  CAS  Google Scholar 

  38. Virtudazo RVR, Srinivasan B, Guo QS et al (2020) Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructured materials synthesized via an alternative interfacial reaction and low-pressure SPS processing. Inorg Chem Front 7:4118–4132. https://doi.org/10.1039/d0qi00888e

    Article  CAS  Google Scholar 

  39. Webster L, Yan JA (2018) Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B 98:144411. https://doi.org/10.1103/PhysRevB.98.144411

    Article  CAS  Google Scholar 

  40. Zheng FW, Zhao JZ, Liu Z, Li ML, Zhou M, Zhang SB, Zhang P (2018) Tunable spin states in the two-dimensional magnet CrI3. Nanoscale 10:14298. https://doi.org/10.1039/c8nr03230k

    Article  CAS  Google Scholar 

  41. Chen W, Zhang JM, Nie YZ, Xia QL, Guo GH (2020) Tuning magnetic properties of single-layer MnTe2 via strain engineering. J Phys Chem Solids 143:109489. https://doi.org/10.1016/j.jpcs.2020.109489

    Article  CAS  Google Scholar 

  42. Kan M, Adhikari S, Sun Q (2014) Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys Chem Chem Phys 16:4990–4994. https://doi.org/10.1039/c3cp55146f

    Article  CAS  Google Scholar 

  43. Guo SD (2016) Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J Mater Chem C 4:9366–9374. https://doi.org/10.1039/c6tc03074b

    Article  CAS  Google Scholar 

  44. Lv HY, Lu WJ, Shao DF, Lu HY, Sun YP (2016) Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J Mater Chem C 4:4538–4545. https://doi.org/10.1039/c6tc01135g

    Article  CAS  Google Scholar 

  45. Yuan KP, Zhang XL, Li L, Tang DW (2019) Effects of tensile strain and finite size on thermal conductivity in monolayer WSe2. Phys Chem Chem Phys 21:468–477. https://doi.org/10.1039/c8cp06414h

    Article  CAS  Google Scholar 

  46. Zhang AX, Liu JT, Guo SD, Li HC (2017) Strain effects on phonon transport in antimonene investigated using a first-principles study. Phys Chem Chem Phys 19:14520–14526. https://doi.org/10.1039/c7cp02486j

    Article  CAS  Google Scholar 

  47. Li DF, He J, Ding GQ et al (2018) Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission. Adv Funct Mater 28:1801685. https://doi.org/10.1002/adfm.201801685

    Article  CAS  Google Scholar 

  48. Xie H, Ouyang T, Germaneau É, Qin GZ, Hu M, Bao H (2016) Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys Rev B 93:075404. https://doi.org/10.1103/PhysRevB.93.075404

    Article  CAS  Google Scholar 

  49. Guo SD, Dong J (2018) Biaxial tensile strain tuned up-and-down behavior on lattice thermal conductivity in β-AsP monolayer. J Phys D: Appl Phys 51:265307. https://doi.org/10.1088/1361-6463/aac56d

    Article  CAS  Google Scholar 

  50. Kuang YD, Lindsay L, Huang BL (2015) Unusual enhancement in intrinsic thermal conductivity of multilayer graphene by tensile strains. Nano Lett 15:6121–6127. https://doi.org/10.1021/acs.nanolett.5b02403

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  52. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  53. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  54. See Supplemental Material for molecular dynamics simulations, band structure, details for convergence tests of lattice thermal conductivity, and some phonon transport properties.

  55. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  56. Wang XD, Wang DS, Wu RQ, Freeman AJ (1996) Validity of the force theorem for magnetocrystalline anisotropy. J Magn Magn Mater 159:337–341. https://doi.org/10.1016/0304-8853(95)00936-1

    Article  CAS  Google Scholar 

  57. Daalderop GHO, Kelly PJ, Schuurmans MFH (1990) First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. Phys Rev B 41:11919–11937. https://doi.org/10.1103/PhysRevB.41.11919

    Article  CAS  Google Scholar 

  58. Tamura SI (1983) Isotope scattering of dispersive phonons in Ge. Phys Rev B 27:858–866. https://doi.org/10.1103/PhysRevB.27.858

    Article  CAS  Google Scholar 

  59. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  60. Li W, Lindsay L, Broido DA, Stewart DA, Mingo N (2012) Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys Rev B 86:174307. https://doi.org/10.1103/PhysRevB.86.174307

    Article  CAS  Google Scholar 

  61. Peng B, Zhang DQ, Zhang H, Shao HZ, Ni G, Zhu YY, Zhu HY (2017) The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale 9:7397–7407. https://doi.org/10.1039/c7nr00838d

    Article  CAS  Google Scholar 

  62. Sheng HH, Zhu YJ, Bai DM, Wu XS, Wang JL (2020) Thermoelectric properties of two-dimensional magnet CrI3. Nanotechnology 31:315713. https://doi.org/10.1088/1361-6528/ab8b0d

    Article  CAS  Google Scholar 

  63. Yu W, Li J, Herng TS et al (2019) Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv Mater 31:1903779. https://doi.org/10.1002/adma.201903779

    Article  CAS  Google Scholar 

  64. Feng SN, Mi WB (2018) Strain and interlayer coupling tailored magnetic properties and valley splitting in layered ferrovalley 2H-VSe2. Appl Surf Sci 458:191–197. https://doi.org/10.1016/j.apsusc.2018.07.070

    Article  CAS  Google Scholar 

  65. Wang DS, Wu RQ, Freeman AJ (1993) First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys Rev B 47:14932–14947. https://doi.org/10.1103/PhysRevB.47.14932

    Article  CAS  Google Scholar 

  66. Ye HS, Zhu YJ, Bai DM, Zhang JT, Wu XS, Wang JL (2021) Spin valve effect in VN/GaN/VN van der Waals heterostructures. Phys Rev B 103:035423. https://doi.org/10.1103/PhysRevB.103.035423

    Article  CAS  Google Scholar 

  67. Bonilla M, Kolekar S, Ma Y et al (2018) Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol 13:289–293. https://doi.org/10.1038/s41565-018-0063-9

    Article  CAS  Google Scholar 

  68. Girerd JJ, Journaux Y, Kahn O (1981) Natural or orthogonalized magnetic orbitals: two alternative ways to describe the exchange interaction. Chem Phys Lett 82:534–538. https://doi.org/10.1016/0009-2614(81)85435-8

    Article  CAS  Google Scholar 

  69. Launay, J.P., Verdaguer, M.: (2013) Electrons in molecules: from basic principles to molecular electronics, Oxford University Press

  70. Pushkarev GV, Mazurenko VG, Mazurenko VV, Boukhvalov DW (2019) Structural phase transitions in VSe2: energetics, electronic structure and magnetism. Phys Chem Chem Phys 21:22647–22653. https://doi.org/10.1039/c9cp03726h

    Article  CAS  Google Scholar 

  71. Carrete J, Li W, Lindsay L, Broido DA, Gallego LJ, Mingo N (2016) Physically founded phonon dispersions of few-layer materials and the case of borophene. Mater Res Lett 4:204–211. https://doi.org/10.1080/21663831.2016.1174163

    Article  CAS  Google Scholar 

  72. Han SH, Zhou ZZ, Sheng CY, Liu JH, Wang L, Yuan HM, Liu HJ (2020) High thermoelectric performance of half-Heusler compound BiBaK with intrinsically low lattice thermal conductivity. J Phys Condens Matter 32:425704. https://doi.org/10.1088/1361-648X/aba2e7

    Article  CAS  Google Scholar 

  73. Wang SL, Wang RH, Wang LL, Chang J (2020) Fabrication and thermoelectric properties of bulk VSe2 with layered structure. Solid State Commun 318:113983. https://doi.org/10.1016/j.ssc.2020.113983

    Article  CAS  Google Scholar 

  74. Lindsay L, Broido DA, Mingo N (2010) Flexural phonons and thermal transport in graphene. Phys Rev B 82:115427. https://doi.org/10.1103/PhysRevB.82.115427

    Article  CAS  Google Scholar 

  75. Peng B, Zhang H, Shao HZ, Xu YF, Ni G, Zhang RJ, Zhu HY (2016) Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Phys Rev B 94:245420. https://doi.org/10.1103/PhysRevB.82.115427

    Article  CAS  Google Scholar 

  76. Wu XF, Varshney V, Lee J, Zhang T, Wohlwend JL, Roy AK, Luo TF (2016) Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett 16:3925–3935. https://doi.org/10.1021/acs.nanolett.6b01536

    Article  CAS  Google Scholar 

  77. Lindsay L, Broido DA (2008) Three-phonon phase space and lattice thermal conductivity in semiconductors. J Phys Condens Matter 20:165209. https://doi.org/10.1088/0953-8984/20/16/165209

    Article  CAS  Google Scholar 

  78. Peng B, Zhang H, Shao HZ, Xu YC, Zhang XC, Zhu HY (2016) Low lattice thermal conductivity of stanine. Sci Rep 6:20225. https://doi.org/10.1038/srep20225

    Article  CAS  Google Scholar 

  79. Taheri A, Da Silva C, Amon CH (2019) Phonon thermal transport in β-NX (X = P, As, Sb) monolayers: a first-principles study of the interplay between harmonic and anharmonic phonon properties. Phys Rev B 99:235425. https://doi.org/10.1103/PhysRevB.99.235425

    Article  CAS  Google Scholar 

  80. Pandey T, Polanco CA, Lindsay L, Parker DS (2017) Lattice thermal transport in La3Cu3X4 compounds (X = P, As, Sb, Bi): interplay of anharmonicity and scattering phase space Phys. Rev B 95:224306. https://doi.org/10.1103/PhysRevB.95.224306

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fundamental Research Funds for the Central Universities under Grant No. 2020ZDPYMS28. We are grateful to the High-Performance Computing Center of China University of Mining and Technology for the award of CPU hours to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Bai or Jianli Wang.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, H., Long, H., Zou, G. et al. Magnetic and phonon transport properties of two-dimensional room-temperature ferromagnet VSe2. J Mater Sci 56, 15844–15858 (2021). https://doi.org/10.1007/s10853-021-06311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06311-4

Navigation