Skip to main content
Log in

Charge photogeneration and recombination in ternary polymer solar cells based on compatible acceptors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The strategy of ternary blend is one of the most important approaches to enhance the power conversion efficiency (PCE) for polymer solar cells (PSCs). The present work prepared a new series of ternary PSCs, PBDB-T-2F:IT-4F:ITIC, based on the perspective of compatibility of non-fullerene molecule (ITIC) and its derivative (IT-4F) and studied the effect of the third component (ITIC) on the morphology and photoelectric conversion process of PBDB-T-2F:IT-4F solar cells. The results showed that surface roughness and phase scale of the PBDB-T-2F:IT-4F changed with the ITIC content, leading to variable morphology, optical, photophysical and electrical characteristics in ternary blend active layers. When the content of ITIC reached 20%, the ternary PSCs achieved the highest PCE (13.41%) among the PSCs. Morphology and optical spectroscopy studies showed that the enhanced performance of ternary device can be attributed to the morphology optimization of ternary active layer with the content of ITIC, and consequently the improved charge photogeneration processes. This work provided another way to achieve the high-performance ternary polymer solar cells via the combination of compatible non-fullerene molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sust Energy Rev 14:312–322

    CAS  Google Scholar 

  2. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S (2013) A review of the applications of nanofluids in solar energy. Inter J Heat Mass Tran 57:582–594

    CAS  Google Scholar 

  3. Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689–6735

    CAS  Google Scholar 

  4. Tai Q, Yan F (2017) Emerging semitransparent solar cells: Materials and device design. Adv Mater 29:1700192

    Google Scholar 

  5. Hsieh Y-T, Chen J-Y, Fukuta S, Lin P-C, Higashihara T, Chueh C-C, Chen W-C (2018) Realization of intrinsically stretchable organic solar cells enabled by charge-extraction layer and photoactive material engineering. ACS Appl Mater Inter 10:21712–21720

    CAS  Google Scholar 

  6. Krebs FC (2009) Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide. Sol Energy Mater Sol Cells 93:1636–1641

    CAS  Google Scholar 

  7. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% efficiency organic solar cells. Sci Bull 65:272–275

    CAS  Google Scholar 

  8. Park JH, Kim JS, Lee JH, Lee WH, Cho K (2009) Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells. J Phys Chem C 113:17579–17584

    CAS  Google Scholar 

  9. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    CAS  Google Scholar 

  10. Wan P, An C, Zhang T, Ma K, Liang N, Xu Y, Zhang S, Xu B, Zhang J, Hou J (2020) The effect of aggregation behavior on photovoltaic performances in benzodithiophene-thiazolothiazole-based wide band-gap conjugated polymers with side chain position changes. Poly Chem 11:1629–1636

    CAS  Google Scholar 

  11. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J (2020) Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater 32:1908205

    CAS  Google Scholar 

  12. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H-L, Cao Y, Chen Y (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361:1094–1098

    CAS  Google Scholar 

  13. An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9:281–322

    Google Scholar 

  14. An Q, Wang J, Gao W, Ma X, Hu Z, Gao J, Xu C, Hao M, Zhang X, Yang C, Zhang F (2020) Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci Bull 65:538–545

    CAS  Google Scholar 

  15. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2017) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    Google Scholar 

  16. Zhou YH, Fuentes-Hernandez C, Shim JW, Khan TM, Kippelen B (2012) High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ Sci 5:9827–9832

    CAS  Google Scholar 

  17. Ameri T, Khoram P, Min J, Brabec CJ (2013) Organic ternary solar cells: a review. Adv Mater 25:4245–4266

    CAS  Google Scholar 

  18. Stoltzfus DM, Donaghey JE, Armin A, Shaw PE, Burn PL, Meredith P (2016) Charge generation pathways in organic solar cells: assessing the contribution from the electron acceptor. Chem Rev 116:12920–12955

    CAS  Google Scholar 

  19. Chen WQ, Zhang QC (2017) Recent progress on non-fullerene small molecule acceptors in organic solar cells (OSCs). J Mater Chem C 5:1275–1302

    CAS  Google Scholar 

  20. Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z (2018) Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption. Adv Mater 30:1703005

    Google Scholar 

  21. An QS, Zhang FJ, Li LL, Wang J, Sun QQ, Zhang J, Tang WH, Deng ZB (2015) Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy. ACS Appl Mater Inter 7:3691–3698

    CAS  Google Scholar 

  22. Jiang B-H, Wang Y-P, Liao C-Y, Chang Y-M, Su Y-W, Jeng R-J, Chen C-P (2021) Improved blend film morphology and free carrier generation provide a high-performance ternary polymer solar cell. ACS Appl Mater Inter 13:1076–1085

    CAS  Google Scholar 

  23. An QS, Wang J, Ma X, Gao J, Hu Z, Liu B, Sun H, Guo X, Zhang X, Zhang F (2020) Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ Sci 13:5039–5047

    CAS  Google Scholar 

  24. Cheng P, Li Y, Zhan X (2014) Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ Sci 7:2005–2011

    CAS  Google Scholar 

  25. Zhang N, Jiang T, Guo C, Qiao L, Ji Q, Yin L, Yu L, Murto P, Xu X (2020) High-performance semitransparent polymer solar cells floating on water: rational analysis of power generation, water evaporation and algal growth. Nano Energy 77:105111

    CAS  Google Scholar 

  26. Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F (2020) Achieving 17.4% efficiency of ternary organic photovoltaics with two well-Compatible nonfullerene acceptors for minimizing energy loss. Adv Energy Mater 10:2001404

    CAS  Google Scholar 

  27. Wan J, Zhang L, He Q, Liu S, Huang B, Hu L, Zhou W, Chen Y (2020) High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor. Adv Funct Mater 30:1909760

    CAS  Google Scholar 

  28. Sun H, Song X, Xie J, Po Sun, Gu P, Liu CM, Chen F, Zhang QC, Chen ZK, Huang W (2017) PDI derivative through fine-tuning molecular structure for fullerene-free organic solar cells. ACS Appl Mater Inter 9:29924–29931

    CAS  Google Scholar 

  29. Fan XB, Gao JH, Wang W, Xiao SQ, Zhan C, Lu XH, Zhang QC (2019) Ladder-type nonacyclic arene bis(thieno[3,2-b]thieno)cyclopentafluorene as a promising building block for non-fullerene acceptor. Chem Asian J 14:1814

    CAS  Google Scholar 

  30. Liao H-C, Chen P-H, Chang RPH, Su W-F (2014) Morphological control agent in ternary blend bulk heterojunction solar cells. Polymers 6:2784–2802

    Google Scholar 

  31. Gasparini N, Paleti SHK, Bertrandie J, Cai G, Zhang G, Wadsworth A, Lu X, Yip H-L, McCulloch L, Baran D (2020) Exploiting ternary blends for improved photostability in high efficiency organic solar cells. ACS Energy Letters 5:1371–1379

    CAS  Google Scholar 

  32. Kumano M, Ide M, Seiki N, Shoji Y, Fukushima T, Saeki A (2016) A ternary blend of a polymer, fullerene, and insulating self-assembling triptycene molecules for organic photovolatics. J Mater Chem A 4:18490–18498

    CAS  Google Scholar 

  33. Khlyabich PP, Rudenko AE, Street RA, Thompson BC (2014) Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells. ACS Appl Mater Inter 6:9913–9919

    CAS  Google Scholar 

  34. Machui F, Rathgeber S, Li N, Ameri T, Brabec CJ (2012) Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices. J Mater Chem 22:15570

    CAS  Google Scholar 

  35. Ye L, Xia H, Xiao Y, Xu J, Miao Q (2014) Ternary blend bulk heterojunction photovoltaic cells with an ambipolar small molecule as the cascade material. RSC Adv 4:1087

    CAS  Google Scholar 

  36. Koppe M, Egelhaaf HJ, Clodic E, Morana M, Lüer L, Troeger A, Sgobba V, Guldi DM, Ameri T, Brabec CJ (2013) Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Adv Energy Mater 3:949–958

    CAS  Google Scholar 

  37. Sharma R, Lee H, Gupta V, Kim H, Kumar M, Sharma C, Suresh Chand, Yoo S, Gupta D (2016) Photo-physics of PTB7, PCBM and ICBA based ternary solar cells. Org Electron 34:111–117

    CAS  Google Scholar 

  38. Ye L, Xu HH, Yu H, Xu WY, Li H, Wang H, Zhao N, Xu JB (2014) Ternary bulk heterojunction photovoltaic cells composed of small molecule donor additive as cascade material. J Phys Chem C 118:20094–20099

    CAS  Google Scholar 

  39. Löslein H, Ameri T, Matt GJ, Koppe M, Egelhaaf HJ, Troeger A, Sgobba V, Guldi DM, Brabec CJ (2013) Transient absorption spectroscopy studies on polythiophene-fullerene bulk heterojunction organic blend films sensitized with a low-bandgap polymer. Macromol Rapid Commun 34:1090–1097

    Google Scholar 

  40. Goh T, Huang JS, Bielinski EA, Thompson BA, Tomasulo S, Lee ML, Sfeir MY, Hazari N, Taylor AD (2015) Co-evaporated bi-squaraine inverted solar cells: enhancement due to energy transfer and open circuit voltage control. ACS Photon 2:86–95

    CAS  Google Scholar 

  41. Hu R, Liu Y, Cheng J, Chen Y, Zhang W, Liu H (2018) Effect of [6,6]-phenyl C61-butyric acid methyl ester phase on the charge generation of poly(3-hexylthiophene)-based polymer solar cells. J Power Sources 390:87–92

    CAS  Google Scholar 

  42. Chen M, Liu D, Li W, Gurney R, Li D, Cai J, Spooner ELK, Kilbride RC, McGettrick JD, Watson TM, Li Z, Jones RAL, Lidzey DG, Wang T (2019) Influences of non-fullerene acceptor fluorination on three-dimensional morphology and photovoltaic properties of organic solar cells. ACS Appl Mater Inter 11:26194–26203

    CAS  Google Scholar 

  43. Wang H, Huang J, Xing S, Yu J (2016) Improved mobility and lifetime of carrier for highly efficient ternary polymer solar cells based on TIPS-pentacene in PTB7:PC71BM. Org Electron 28:11–19

    CAS  Google Scholar 

  44. Shang Q, Yu J, Hu R, Liu Z, Cheng J, Li Y, Shai X, Huo M-M, Yang X, Li L (2020) Enhanced charge transport in conventional polymer solar cells with a perovskite-type LaNiO3 layer. ACS Appl Mater Inter 12:13051–13060

    Google Scholar 

  45. Cha H, Chung DS, Bae SY, Lee M-J, An TK, Hwang J, Kim KH, Kim Y-H, Choi DH, Park CE (2012) Complementary absorbing star-shaped small molecules for the preparation of ternary cascade energy structures in organic photovoltaic cells. Adv Funct Mater 23:1556

    Google Scholar 

  46. Huang JH, Velusamy M, Ho KC, Lin JT, Chu CW (2010) A ternary cascade structure enhances the efficiency of polymer solar cells. J Mater Chem 20:2820

    CAS  Google Scholar 

  47. Li W, Ye L, Li S, Yao H, Ade H, Hou J (2018) A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor. Adv Mater 30:1707170

    Google Scholar 

  48. Hu R, Su X, Liu H, Liu Y, Huo M-M, Zhang W (2020) Recycled indium tin oxide transparent conductive electrode for polymer solar cells. J Mater Sci 55:11403–11410. https://doi.org/10.1007/s10853-020-04825-x

    Article  CAS  Google Scholar 

  49. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv Mater 18:789–794

    CAS  Google Scholar 

  50. Yuan J, Ford MJ, Ma W, Bazan GC (2017) Film morphology of solution-processed regioregular ternary conjugated polymer solar cells under processing additive stress. J Mater Chem A 5:8903–8908

    CAS  Google Scholar 

  51. Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sumbce TC, Lam YM (2014) The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci 7:399–407

    CAS  Google Scholar 

  52. Li T, Zhang X, Jiang C, Hou L (2011) Methods and analysis of factors impact on the efficiency of the photovoltaic generation. J Phys Conf Ser 276:012176

    Google Scholar 

  53. Huo M-M, Liang R, XingY-D HuR, Zhao N-J, Zhang W, Fu L-M, Ai X-C, Zhang J-P, Hou J-H (2013) Side-chain effects on the solution-phase conformations and charge photogenerations dynamics of low-bandgap copolymers. J Chem Phys 139:124904

    Google Scholar 

  54. Wu Y, An C, Shi L, Yang L, Qin Y, Liang N, He C, Wang Z, Hou J (2018) The crucial role of chlorinated thiophene orientation in conjugated polymers for photovoltaic devices. Angew Chem Inter Ed 57:12911–12915

    CAS  Google Scholar 

  55. Sio AD, Troiani F, Maiuri M, Rehault J, Sommer E, Lim J, Huelga SF, Plenio MB, Rozzi CA, Cerullo G, Molinari E, Lienau C (2016) Tracking the coherent generation of polaron pairs in conjugated polymers. Nat Commun 7:13742

    Google Scholar 

  56. Zhang W, Wang Y-W, Hu R, Fu L-M, Ai X-C, Zhang J-P, Hou J-H (2013) Mechanism of primary charge photogeneration in polyfiuorene copolymer fullerene blends and influence of the donor acceptor lowest unccupied molecular orbital level offset. J Phys Chem C 117:735–749

    CAS  Google Scholar 

  57. Nogueira AF, Montanari I, Nelson J, Durrant JR, Winder C, Sariciftci NS, Brabec C (2003) Charge recombination in conjugated polymer/fullerene blended films Studied by transient absorption spectroscopy. J Phys Chem B 107:1567–1573

    CAS  Google Scholar 

  58. Hu R, Zhang W, Fu L-M, Zhang J-P, Ai X-C (2013) Spectroelectrochemical characterization of anionic and cationic polarons in poly(3-hexylthiophene)/fullerene blend. Effect of morphology and interface. Synth Met 169:41–47

    CAS  Google Scholar 

  59. Zhang W, Hu R, Li D, Huo M-M, Ai X-C, Zhang J-P (2012) Primary dynamics of exciton and charge photogeneration in solvent vapor annealed P3HT/PCBM films. J Phys Chem C 116:4298–4310

    CAS  Google Scholar 

  60. Cook S, Han L, Furube A, Katoh R (2010) Singlet annihilation in films of regioregular poly(3-hexylthiophene): estimates for singlet diffusion lengths and the correlation between singlet annihilation rates and spectral relaxation. J Phys Chem C 114:10962–10968

    CAS  Google Scholar 

  61. Street RA (2010) Experimental test for geminate recombination applied to organic solar cells. Phys Rev B 82:121301

    Google Scholar 

  62. Lakhwani G, Rao A, Friend RH (2014) Bimolecular recombination in organic photovoltaics. Ann Rev Phys Chem 65:557

    CAS  Google Scholar 

  63. Schauer F (2005) Space-charge-limited currents for organic solar cells optimisation. Sol Energy Mater Sol Cells 87:235–250

    CAS  Google Scholar 

  64. Bernède JC (2008) Organic photovoltaic cells: History, principle and techniques. J Chil Chem Soc 53:1549–1564

    Google Scholar 

  65. Wang H, Xing S, Zheng Y, Kong J, Yu J, Taylor AD (2018) Three-phase morphology evolution in sequentially solution-processed polymer photodetector: Toward low dark current and high photodetectivity. ACS Appl Mater Inter 10:3856–3864

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Natural Science Foundation of China (21603020, 21903017), National Key R&D Program of China (2018YFB1502703), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901319, KJQN202001323), General program of Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0874), Natural Science Foundation of Guangdong Province (2019A1515010783), Guangzhou Science and Technology Plan Project (202001010002), Young Talents Program of Guangzhou University (RQ2020080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Ruilin Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 638 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zhang, W., Xiao, Z. et al. Charge photogeneration and recombination in ternary polymer solar cells based on compatible acceptors. J Mater Sci 56, 14181–14195 (2021). https://doi.org/10.1007/s10853-021-06232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06232-2

Navigation