Skip to main content

Advertisement

Log in

Synthesis of TiO2/LaFeO3 composites for the photoelectrochemical hydrogen evolution

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing highly active catalysts for hydrogen evolution reaction is vital for large-scale and efficient production of hydrogen through water splitting. In this study, we reported scale-up TiO2/LaFeO3 composite catalysts with multiple heterojunctions synthesized via facile solid-phase reaction and investigated their hydrogen evolution reaction (HER) performance in both acidic and alkaline solutions. To be excited, under AM1.5 simulated sunlight irradiation, the working electrode decorated by TiO2/LaFeO3 presents a higher current density with 10 mV/cm2 at 0.55 V in a 0.5 M H2SO4 solution, suppressing the corresponding performance with the occasion of pure electrocatalysis. Importantly, the hydrogen evolution efficiency can reach 7.62 mmol h−1 cm−2, overwhelming approximately 5.3 times higher than that of commercial P25 (1.43 mmol h−1 cm−2) with exceptional stability via imposing simulated sunlight and a bias of 500 mV. Therefore, such excellent catalysts could serve as an alternative to reach remarkable HER performance via fossil fuels free technology, potentially making contribution toward the goal of global “carbon neutral” by 2050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 2

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Zhang J, Chen Z, Liu C, Zhao J, Liu S, Rao D, Nie A, Chen Y, Deng Y, Hu W (2020) Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Sci China Mater 63:249. https://doi.org/10.1007/s40843-019-1176-6

    Article  CAS  Google Scholar 

  2. Barczuk PJ, Noworyta KR, Dolata M, Jakubow-Piotrowska K, Augustynski J (2020) Visible-light activation of low-cost rutile TiO2 photoanodes for photoelectrochemical water splitting. Solar Energy Mater Solar Cells. https://doi.org/10.1016/j.solmat.2020.110424

    Article  Google Scholar 

  3. Pu Y-C, Wang G, Chang K-D, Ling Y, Lin Y-K, Fitzmorris BC, Liu C-M, Lu X, Tong Y, Zhang JZ (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823

    Article  CAS  Google Scholar 

  4. Yang Z, Jiang Y, Zhang W, Ding Y, Jiang Y, Yin J, Zhang P, Luo H (2019) Solid-state, low-cost, and green synthesis and robust photochemical hydrogen evolution performance of ternary tio2/mgtio3/c photocatalysts. Science 14:15–26

    CAS  Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  6. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting – materials and challenges. Chem Soc Rev 46:4645–4660

    Article  CAS  Google Scholar 

  7. Zhu H, Zhang P, Dai S (2015) Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal 5:6370–6385

    Article  CAS  Google Scholar 

  8. Li J-M, Wang Y-T, Hsu Y-J (2018) A more accurate, reliable method to evaluate the photoelectrochemical performance of semiconductor electrode without under/over estimation. Electrochim Acta 267:141–149. https://doi.org/10.1016/j.electacta.2018.02.015

    Article  CAS  Google Scholar 

  9. Pu Y-C, Ling Y, Chang K-D, Liu C-M, Zhang JZ, Hsu Y-J, Li Y (2014) Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation. J Phys Chem C 118:15086–15094

    Article  CAS  Google Scholar 

  10. Chiu Y-H, Lai T-H, Kuo M-Y, Hsieh P-Y, Hsu Y-J (2019) Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater 7:080901

    Article  Google Scholar 

  11. Chang Y-S, Hsieh P-Y, Mark Chang T-F, Chen C-Y, Sone M, Hsu Y-J (2020) Incorporating graphene quantum dots to enhance the photoactivity of CdSe-sensitized TiO2 nanorods for solar hydrogen production. J Mater Chem A 8:13971–13979. https://doi.org/10.1039/D0TA02359K

    Article  CAS  Google Scholar 

  12. Yu Z, Liu H, Zhu M, Li Y, Li W (2019) Interfacial charge transport in 1d tio2 based photoelectrodes for photoelectrochemical water splitting. Small n/a. https://doi.org/10.1002/smll.201903378

    Article  Google Scholar 

  13. Wu T, Zhao H, Zhu X, Xing Z, Liu Q, Liu T, Gao S, Lu S, Chen G, Asiri AM, Zhang Y, Sun X (2020) Identifying the origin of ti3+ activity toward enhanced electrocatalytic n2 reduction over tio2 nanoparticles modulated by mixed-valent copper. Adv Mater 32:2000299. https://doi.org/10.1002/adma.202000299

    Article  CAS  Google Scholar 

  14. Kanan S, Moyet MA, Arthur RB, Patterson HH (2020) Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews 62:1–65. https://doi.org/10.1080/01614940.2019.1613323

    Article  CAS  Google Scholar 

  15. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energy 45:7764–7778. https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  CAS  Google Scholar 

  16. Momeni MM, Akbarnia M, Ghayeb Y (2020) Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: Alcohol series. Int J Hydrogen Energy 45:33552–33562. https://doi.org/10.1016/j.ijhydene.2020.09.112

    Article  CAS  Google Scholar 

  17. Gao D, Liu W, Xu Y, Wang P, Fan J, Yu H (2020) Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity. Appl Catal B 260:118190. https://doi.org/10.1016/j.apcatb.2019.118190

    Article  CAS  Google Scholar 

  18. Yang Z, Jiang Y, Yu Q, Ding Y, Jiang Y, Yin J, Zhang P (2017) Facile preparation of exposed 001 facet TiO2 nanobelts coated by monolayer carbon and its high-performance photocatalytic activity. J Mater Sci 52:13586–13595. https://doi.org/10.1007/s10853-017-1446-2

    Article  CAS  Google Scholar 

  19. Diaz-Angulo J, Lara-Ramos J, Mueses M, Hernández-Ramírez A, Li Puma G, Machuca-Martínez F (2020) Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors. Chem Eng J 381:122520. https://doi.org/10.1016/j.cej.2019.122520

    Article  CAS  Google Scholar 

  20. Zheng L, Teng F, Ye X, Zheng H, Fang X (2020) Photo/electrochemical applications of metal sulfide/tio2 heterostructures. Adv Energy Mater 10:1902355. https://doi.org/10.1002/aenm.201902355

    Article  CAS  Google Scholar 

  21. Yang Z, Ding Y, Jiang Y, Zhang P, Jin H (2018) Hierarchical C/SiO x /TiO2 ultrathin nanobelts as anode materials for advanced lithium ion batteries. Nanotechnology 29:405602. https://doi.org/10.1088/1361-6528/aad2f9

    Article  CAS  Google Scholar 

  22. Mohammadnezhad G, Momeni MM, Nasiriani F (2020) Enhanced photoelectrochemical performance of tin oxide decorated tungsten oxide doped TiO2 nanotube by electrodeposition for water splitting. J Electroanal Chem 876:114505. https://doi.org/10.1016/j.jelechem.2020.114505

    Article  CAS  Google Scholar 

  23. Chang Y-S, Choi M, Baek M, Hsieh P-Y, Yong K, Hsu Y-J (2018) CdS/CdSe co-sensitized brookite H:TiO2 nanostructures: charge carrier dynamics and photoelectrochemical hydrogen generation. Appl Catal B 225:379–385. https://doi.org/10.1016/j.apcatb.2017.11.063

    Article  CAS  Google Scholar 

  24. Fang M-J, Tsao C-W, Hsu Y-J (2020) Semiconductor nanoheterostructures for photoconversion applications. J Phys D Appl Phys 53:143001

    Article  CAS  Google Scholar 

  25. Hsieh P-Y, Chiu Y-H, Lai T-H, Fang M-J, Wang Y-T, Hsu Y-J (2019) TiO2 Nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production. ACS Appl Mater Interfaces 11:3006–3015. https://doi.org/10.1021/acsami.8b17858

    Article  CAS  Google Scholar 

  26. Rusevova K, Köferstein R, Rosell M, Richnow HH, Kopinke F-D, Georgi A (2014) LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chem Eng J 239:322–331. https://doi.org/10.1016/j.cej.2013.11.025

    Article  CAS  Google Scholar 

  27. Chen P, Ong W-J, Shi Z, Zhao X, Li N (2020) Pb-based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond. Adv Func Mater 30:1909667. https://doi.org/10.1002/adfm.201909667

    Article  CAS  Google Scholar 

  28. Zhang W, Yin J-R, Tang X-Q, Zhang P, Ding Y-H (2017) Density functional theory studies on the structural and physical properties of Cu-doped anatase TiO2(101) surface. Physica E 85:259–263. https://doi.org/10.1016/j.physe.2016.09.008

    Article  CAS  Google Scholar 

  29. Cheng G, Tan X, Song X, Chen X, Dai W, Yuan R, Fu X (2019) Visible light assisted thermocatalytic reaction of CO + NO over Pd/LaFeO3. Appl Catal B 251:130–142. https://doi.org/10.1016/j.apcatb.2019.03.029

    Article  CAS  Google Scholar 

  30. Li L, Xu J (2020) Rare earth perovskite modified cobalt disulfide catalysts controlled by reaction solvent synthesis to form a p-n heterojunction. Appl Surf Sci 505:143937. https://doi.org/10.1016/j.apsusc.2019.143937

    Article  CAS  Google Scholar 

  31. Chen Z, Fan T, Zhang Q, He J, Fan H, Sun Y, Yi X, Li J (2019) Interface engineering: Surface hydrophilic regulation of LaFeO3 towards enhanced visible light photocatalytic hydrogen evolution. J Colloid Interface Sci 536:105–111. https://doi.org/10.1016/j.jcis.2018.10.030

    Article  CAS  Google Scholar 

  32. Nakayama S (2001) LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods. J Mater Sci 36:5643–5648. https://doi.org/10.1023/A:1012526018348

    Article  CAS  Google Scholar 

  33. Wu Y, Wang H, Tu W, Liu Y, Tan YZ, Yuan X, Chew JW (2018) Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J Hazard Mater 347:412–422. https://doi.org/10.1016/j.jhazmat.2018.01.025

    Article  CAS  Google Scholar 

  34. Dhinesh Kumar R, Thangappan R, Jayavel R (2017) Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. J Phys Chem Solids 101:25–33. https://doi.org/10.1016/j.jpcs.2016.10.005

    Article  CAS  Google Scholar 

  35. Li L, Yu H, Xu J, Zhao S, Liu Z, Li Y (2019) Rare earth element, Sm, modified graphite phase carbon nitride heterostructure for photocatalytic hydrogen production. New J Chem 43:1716–1724. https://doi.org/10.1039/C8NJ05619F

    Article  CAS  Google Scholar 

  36. Raghuwanshi VS, Garusinghe UM, Batchelor W, Garnier G (2020) Polyamide-amine-epichlorohydrin (PAE) induced TiO2 nanoparticles assembly in cellulose network. J Colloid Interface Sci 575:317–325. https://doi.org/10.1016/j.jcis.2020.04.121

    Article  CAS  Google Scholar 

  37. Gong J, Newman RS, Engel M, Zhao M, Bian F, Glotzer SC, Tang Z (2017) Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat Commun 8:14038. https://doi.org/10.1038/ncomms14038

    Article  CAS  Google Scholar 

  38. Dudric R, Vladescu A, Rednic V, Neumann M, Deac IG, Tetean R (2014) XPS study on La0.67Ca0.33Mn1−xCoxO3 compounds. J Mol Struct 1073:66–70. https://doi.org/10.1016/j.molstruc.2014.04.065

    Article  CAS  Google Scholar 

  39. Lam DJ, Veal BW, Ellis DE (1980) Electronic structure of lanthanum perovskites with $3d$ transition elements. Phys Rev B 22:5730–5739. https://doi.org/10.1103/PhysRevB.22.5730

    Article  CAS  Google Scholar 

  40. Cao E, Cui T, Yang Y, Zhang Y, Hao W, Sun L, Peng H (2017) Simultaneous control of electrical and magnetic properties of LaFeO3-δ nanoparticles by contact of ethanol gas. Mater Lett 190:143–145. https://doi.org/10.1016/j.matlet.2016.12.086

    Article  CAS  Google Scholar 

  41. Lin L, Wang K, Yang K, Chen X, Fu X, Dai W (2017) The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2–x)Nx. Appl Catal B 204:440–455. https://doi.org/10.1016/j.apcatb.2016.11.054

    Article  CAS  Google Scholar 

  42. Yang K, Liu J, Si R, Chen X, Dai W, Fu X (2014) Comparative study of Au/TiO2 and Au/Al2O3 for oxidizing CO in the presence of H2 under visible light irradiation. J Catal 317:229–239. https://doi.org/10.1016/j.jcat.2014.06.005

    Article  CAS  Google Scholar 

  43. Yao X, Xiong Y, Zou W, Zhang L, Wu S, Dong X, Gao F, Deng Y, Tang C, Chen Z, Dong L, Chen Y (2014) Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Appl Catal B 144:152–165. https://doi.org/10.1016/j.apcatb.2013.06.020

    Article  CAS  Google Scholar 

  44. Zhu Q, Peng Y, Lin L, Fan C-M, Gao G-Q, Wang R-X, Xu A-W (2014) Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2:4429–4437. https://doi.org/10.1039/C3TA14484D

    Article  CAS  Google Scholar 

  45. Feng Y, Yan T, Wu T, Zhang N, Yang Q, Sun M, Yan L, Du B, Wei Q (2019) A label-free photoelectrochemical aptasensing platform base on plasmon Au coupling with MOF-derived In2O3@g-C3N4 nanoarchitectures for tetracycline detection. Sens Actuators, B Chem 298:126817. https://doi.org/10.1016/j.snb.2019.126817

    Article  CAS  Google Scholar 

  46. Li K, Lu X, Zhang Y, Liu K, Huang Y, Liu H (2020) Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environ Res 185:109409. https://doi.org/10.1016/j.envres.2020.109409

    Article  CAS  Google Scholar 

  47. Zhang Q, Wang L, Feng J, Xu H, Yan W (2014) Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays. Phys Chem Chem Phys 16:23431–23439. https://doi.org/10.1039/C4CP02967D

    Article  CAS  Google Scholar 

  48. Li H, Dong W, Xi J, Du G, Ji Z (2018) 3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting. J Mater Sci 53:7609–7620. https://doi.org/10.1007/s10853-018-2051-8

    Article  CAS  Google Scholar 

  49. Li F, Huang H, Li G, Leung DYC (2019) TiO2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): enhancement on photoelectrochemical performance. J Nanopart Res 21:29. https://doi.org/10.1007/s11051-018-4443-8

    Article  CAS  Google Scholar 

  50. Wen P, Su F, Li H, Sun Y, Liang Z, Liang W, Zhang J, Qin W, Geyer SM, Qiu Y, Jiang L (2020) A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting. Chem Eng J 385:123878. https://doi.org/10.1016/j.cej.2019.123878

    Article  CAS  Google Scholar 

  51. Hu X, Huang J, Zhao F, Yi P, He B, Wang Y, Chen T, Chen Y, Li Z, Liu X (2020) Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes. Journal of Materials Chemistry A 8:14915–14920. https://doi.org/10.1039/D0TA04144K

    Article  CAS  Google Scholar 

  52. Kumar P, Kar P, Manuel AP, Zeng S, Thakur UK, Alam KM, Zhang Y, Kisslinger R, Cui K, Bernard GM, Michaelis VK, Shankar K (2020) Noble metal free, visible light driven photocatalysis using tio2 nanotube arrays sensitized by p-doped c3n4 quantum dots. Adv Opt Mater 8:1901275. https://doi.org/10.1002/adom.201901275

    Article  CAS  Google Scholar 

  53. Wang Y, Zhang F, Yang M, Wang Z, Ren Y, Cui J, Zhao Y, Du J, Li K, Wang W, Kang DJ (2019) Synthesis of porous MoS2/CdSe/TiO2 photoanodes for photoelectrochemical water splitting. Microporous Mesoporous Mater 284:403–409. https://doi.org/10.1016/j.micromeso.2019.04.055

    Article  CAS  Google Scholar 

  54. Li F, Dong B, Feng S (2019) Bi shell-BiOI core microspheres modified TiO2 nanotube arrays photoanode: improved effect of Bi shell on photoelectrochemical hydrogen evolution in seawater. Int J Hydrogen Energy 44:29986–29999. https://doi.org/10.1016/j.ijhydene.2019.09.210

    Article  CAS  Google Scholar 

  55. Hwang SW, Kim JU, Baek JH, Kalanur SS, Jung HS, Seo H, Cho IS (2019) Solution-processed TiO2/BiVO4/SnO2 triple-layer photoanode with enhanced photoelectrochemical performance. J Alloy Compd 785:1245–1252. https://doi.org/10.1016/j.jallcom.2019.01.251

    Article  CAS  Google Scholar 

  56. Garcia-Muñoz P, Fresno F, Ivanez J, Robert D, Keller N (2020) Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water. J Hazard Mater 400:123099. https://doi.org/10.1016/j.jhazmat.2020.123099

    Article  CAS  Google Scholar 

  57. Humayun M, Qu Y, Raziq F, Yan R, Li Z, Zhang X, Jing L (2016) Exceptional visible-light activities of tio2-coupled n-doped porous perovskite lafeo3 for 2,4-dichlorophenol decomposition and co2 conversion. Environ Sci Technol 50:13600–13610. https://doi.org/10.1021/acs.est.6b04958

    Article  CAS  Google Scholar 

  58. Jiang Y, Pang H, Sun X, Yang Z, Ding Y, Liu Z, Zhang P (2021) TiO2 nanobelts with ultra-thin mixed C/SiOx coating as high-performance photo/photoelectrochemical hydrogen evolution materials. Appl Surf Sci 537:147861. https://doi.org/10.1016/j.apsusc.2020.147861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51702371, 21707023), High-level Talent Gathering Project in Hunan Province (2019RS1059), Provincial Key Research and Development Plan of Hunan Province (2018SK2034) and New Faculty Start-Up Funding from Xiangtan University (18QDZ16). We also appreciated Dr. Jian Shen for the contribution to this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.H.Jiang and Q.Lv had contributed to investigation and Methodology; X.Sun carried out formal analysis; and Y.H.Ding and F.Xu took part in conceptualization, writing, reviewing and editing.

Corresponding author

Correspondence to Yanhuai Ding.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Lv, Q., Xu, F. et al. Synthesis of TiO2/LaFeO3 composites for the photoelectrochemical hydrogen evolution. J Mater Sci 56, 15188–15204 (2021). https://doi.org/10.1007/s10853-021-06188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06188-3

Navigation