Skip to main content
Log in

Improve the binding force of PEEK coating with Mg surface by femtosecond lasers induced micro/nanostructures

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A polymer coating is an effective approach to increase the surface wear and corrosion resistance of magnesium alloys, but the low bonding strength limits its further applications. In this study, poly-ether-ether-ketone (PEEK) coating was prepared on the AZ31 magnesium alloy. Femtosecond laser surface treatment was used to change the surface characteristics of Mg-base alloy, and the effect of the laser-induced structures on improving the bonding strength of PEEK coating was investigated. With the increase in laser energy, the gap between laser-induced nanostructures gradually increases. When V = 1000 mm s−1, a uniform striped structure is formed on the surface, and the average period is about 0.5 μm. When V = 300 mm s−1, the stripe breaks and grows in the length direction, and the surface texture tends to be a coral-like structure with diameter of about 7 μm. When the scanning speed is reduced to V = 200 mm s−1, the grooves gradually deepen, and irregular bumped structures were formed with the spacing of about 3 ~ 5 μm. The surface roughness after laser treatment increased from 9.37 nm to 589.3 nm, and the surface of magnesium alloy changed from hydrophilic to hydrophobic. PEEK coating was prepared by electrostatic spraying. The raw PEEK is fully melted and infiltrated with the laser-induced structure matrix, resulting in a high bonding strength compared with the untreated Mg matrix. The surface of the nanostructure has excellent wettability to PEEK coating, which improves the adhesion of coating and prolongs the service life of the magnesium alloy. PEEK coating has excellent sealing effect and chemical corrosion resistance, which increases the corrosion potential on the substrate surface and the corrosion resistance. Results can provide a new approach to improve the bonding properties between metal bases and polymer coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Taltavull C, Torres B, Lopez AJ, Rodrigo P, Otero E, Atrens A, Rams J (2014) Corrosion behaviour of laser surface melted magnesium alloy AZ91D. Mater Des 57:40–50. https://doi.org/10.1016/j.matdes.2013.12.069

    Article  CAS  Google Scholar 

  2. Sin SL, Elsayed A, Ravindran C (2013) review: Inclusions in magnesium and its alloys. Int Mate Rev 58(7):419–436. https://doi.org/10.1179/1743280413Y.0000000017

    Article  CAS  Google Scholar 

  3. Chen L, Yao Y (2014) review: processing, microstructures, and mechanical properties of magnesium matrix composites. Acta Metall Sin 27(5):762–774. https://doi.org/10.1007/s40195-014-0161-0

    Article  CAS  Google Scholar 

  4. Gu XN, Li SS, Li XM, Fan YB (2014) Review: magnesium based degradable biomaterials. Front Mater Sci 8:200–218. https://doi.org/10.1007/s11706-014-0253-9

    Article  Google Scholar 

  5. Mao B, Siddaiah A, Zhang X, Li B, Menezes PL, Liao YL (2019) The influence of surface pre-twinning on the friction and wear performance of an AZ31B Mg alloy. Appl Surf Sci 480:998–1007. https://doi.org/10.1016/j.apsusc.2019.03.070

    Article  CAS  Google Scholar 

  6. Liu HG, Cao FY, Song GL, Zheng D, Shi ZM, Dargusch MS, Atrens A (2019) Review of the atmospheric corrosion of magnesium alloys. J Mater Sci Technol 35(9):2003–2016. https://doi.org/10.1016/j.jmst.2019.05.001

    Article  Google Scholar 

  7. Lee D, Kim B, Lee S et al (2019) Enhanced corrosion resistance of Mg-Sn-Zn-Al alloy by Y microalloying. Scripta Mater 163:125–129. https://doi.org/10.1016/j.scriptamat.2019.01.015

    Article  CAS  Google Scholar 

  8. Hashimoto K, Kumagai N, Yoshioka H, Asami K (1990) Laser and electron beam processing of amorphous surface alloys on conventional crystalline metals. Mater Manuf Processes 5(4):567–590. https://doi.org/10.1080/10426919008953278

    Article  CAS  Google Scholar 

  9. Yasui N, Nomura H, Ide-Ektessabi A (2004) Characteristics of ion beam modified magnesium oxide films. Thin Solid Films 447:377–382. https://doi.org/10.1016/S0040-6090(03)01087-3

    Article  CAS  Google Scholar 

  10. Rotshtein VP, Ivanov YF, Proskurovsky DI, Karlik KV, Shulepov IA, Markov AB (2004) Microstructure of the near-surface layers of austenitic stainless steels irradiated with a low-energy, high-current electron beam. Surf Coat Technol 180:382–386. https://doi.org/10.1016/j.surfcoat.2003.10.089

    Article  CAS  Google Scholar 

  11. Thirumalaikumarasamy D, Shanmugam K, Balasubramanian V (2014) Establishing empirical relationships to predict porosity level and corrosion rate of atmospheric plasma-sprayed alumina coatings on AZ31B magnesium alloy. J Magnes Alloys 2(2):140–153. https://doi.org/10.1016/j.jma.2014.05.002

    Article  CAS  Google Scholar 

  12. Chvedov D, Jones R (2004) Frictional behavior of rolled surfaces coated with polymer films. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2004.07.013

    Article  Google Scholar 

  13. Lima CRC, Mojena MAR, Rovere CAD, De Souza NFC, Fals HDC (2016) Slurry erosion and corrosion behavior of some engineering polymers applied by low-pressure flame spray. J Mater Eng Perform 25(11):4911–4918. https://doi.org/10.1007/s11665-016-2317-8

    Article  CAS  Google Scholar 

  14. Williams DF, McNamara A, Turner RM (1987) Potential of polyetheretherketone (PEEK) and carbon-fifibre-reinforced PEEK in medical applications. J Mater Sci Lett 6:188–190. https://doi.org/10.1007/BF01728981

    Article  CAS  Google Scholar 

  15. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M (2013) Carbon fiber reinforced PEEK Optima—A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2012.09.013

    Article  Google Scholar 

  16. Wang Q, Xue Q, Liu H, Shen W, Xu J (1996) The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK. Wear 198(1–2):216–219. https://doi.org/10.1016/0043-1648(96)07201-8

    Article  CAS  Google Scholar 

  17. Hanchi J, Eiss NS (1997) Dry sliding friction and wear of short carbon-fiber-reinforced polyetheretherketone (PEEK) at elevated temperatures. Wear 203–204:380–386. https://doi.org/10.1016/S0043-1648(96)07347-4

    Article  Google Scholar 

  18. Lu ZP, Friedrich K (1995) On sliding friction and wear of PEEK and its composites. Wear. https://doi.org/10.1016/0043-1648(95)90178-7

    Article  Google Scholar 

  19. Hedayati M, Salehi M, Bagheri R, Panjepour M, Naeimi F (2012) Tribological and mechanical properties of amorphous and semi-crystalline PEEK/SiO2 nanocomposite coatings deposited on the plain carbon steel by electrostatic powder spray technique. Prog Org Coat 74(1):50–58. https://doi.org/10.1016/j.porgcoat.2011.09.014

    Article  CAS  Google Scholar 

  20. Normand B, Takenouti H, Keddam M, Liao HL, Monteil G, Coddet C (2004) Electrochemical impedance spectroscopy and dielectric properties of polymer: application to PEEK thermally sprayed coating. Electrochim Acta 49(17–18):2981–2986. https://doi.org/10.1016/j.electacta.2004.01.057

    Article  CAS  Google Scholar 

  21. Li J, Liao H, Coddet C (2002) Friction and wear behavior of flame-sprayed PEEK coatings. Wear 252(9–10):824–831. https://doi.org/10.1016/S0043-1648(02)00053-4

    Article  CAS  Google Scholar 

  22. Simonin L, Liao H (2000) Characterization of flame-sprayed PEEK coatings by FTIR-ATR, DSC and acoustic microscopy. Macromol Mater Eng 283(1):153–162. https://doi.org/10.1002/1439-2054(20001101)283:1%3c153::aid-mame153%3e3.0.co;2-#

    Article  CAS  Google Scholar 

  23. Zhang G, Liao H, Cherigui M, Davim JP, Coddet C (2007) Effect of crystalline structure on the hardness and interfacial adherence of flame sprayed poly (ether–ether–ketone) coatings. Eur Polym J 43:1077–1082. https://doi.org/10.1016/j.eurpolymj.2006.12.039

    Article  CAS  Google Scholar 

  24. Patel K, Doyle CS, Yonekura D, James BJ (2010) Effect of surface roughness parameters on thermally sprayed PEEK coatings. Sur Coat Technol 204(21):3567–3572. https://doi.org/10.1016/j.surfcoat.2010.04.026

    Article  CAS  Google Scholar 

  25. Sugioka K, Cheng Y (2014) Femtosecond laser three-dimensional micro-and nanofabrication. Appl Phys Rev. https://doi.org/10.1063/1.4904320

    Article  Google Scholar 

  26. Zhang YL, Chen QD, Hong X, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448. https://doi.org/10.1016/j.nantod.2010.08.007

    Article  CAS  Google Scholar 

  27. Yao YH, Lu CH, Xu SW, Ding JX, Jia TQ, Zhang SA, Sun ZR (2014) Femtosecond pulse shaping technology and its applications. Acta Phys Sinic 63(18):4201. https://doi.org/10.7498/aps.63.184201

    Article  CAS  Google Scholar 

  28. Jung YC, Bhushan B (2006) Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nano Technol 17(19):4970–4980. https://doi.org/10.1088/0957-4484/17/19/033

    Article  CAS  Google Scholar 

  29. Guan YC, Zhou W, Li ZL, Zheng HY (2014) Effect of processing environment on laser-induced darkening evolution in magnesium alloy. Opt Lasers Eng 52(1):35–40. https://doi.org/10.1016/j.optlaseng.2013.07.018

    Article  Google Scholar 

  30. Guan YC, Zhou W, Li ZL, Zheng HY, Lim GC, Hong MH (2014) Femtosecond laser-induced ripple structures on magnesium. Appl Phys A 115(115):13–18. https://doi.org/10.1007/s00339-013-7927-5

    Article  CAS  Google Scholar 

  31. Vorobyev AY, Makin VS, Guo C (2007) Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J Appl Phys 101(3):034903. https://doi.org/10.1063/1.2432288

    Article  CAS  Google Scholar 

  32. Guan YC, Zhou W, Zheng HY (2009) Effect of Nd:yag laser melting on surface energy of az91d mg alloy. Surf Rev Lett 16(06):801–806. https://doi.org/10.1142/S0218625X09013347

    Article  CAS  Google Scholar 

  33. Zhang G, Liao H, Yu H, Ji V, Huang W, Mhaisalkar SG, Coddet C (2006) Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surf Coat Technol 200(24):6690–6695. https://doi.org/10.1016/j.surfcoat.2005.10.006

    Article  CAS  Google Scholar 

  34. Zhang G, Liao H, Yu H, Costil S, Mhaisalkar SG, Bordes JM, Coddet C (2006) Deposition of PEEK coatings using a combined flame spraying–laser remelting process. Surf Coat Technol 201(1–2):243–249. https://doi.org/10.1016/j.surfcoat.2005.11.094

    Article  CAS  Google Scholar 

  35. Chui PF, Jing R, Zhang FG, Li JH, Feng T (2020) Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.155693

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Project No. 2020YFC1107403); National Natural Science Foundation of China (Project No. 51771069), and Natural Science Foundation of Hebei Province of China (Project No. E2020202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyong Liang.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zou, X., Zhang, S. et al. Improve the binding force of PEEK coating with Mg surface by femtosecond lasers induced micro/nanostructures. J Mater Sci 56, 13313–13322 (2021). https://doi.org/10.1007/s10853-021-06140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06140-5

Navigation