Skip to main content
Log in

Optimization of electrical and thermal transport properties of layered Bi2O2Se via Nb doping

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Layered oxygen-containing compound Bi2O2Se is a promising n-type thermoelectric material, favored by its considerably high Seebeck coefficient and low thermal conductivity. Significant preferred orientation along plane (110), identified in the hot-pressed sample, results in obvious anisotropy in the electrical and thermal transport properties. Nb substitution Bi in the insulating layer [Bi2O2]2+ can effectively increase the electron concentration (from 1016 to 1018 cm−3) by two orders of magnitude, while maintaining high mobility. Therefore, a larger power factor of 2.19 μW cm−1 K−2 has been obtained for Bi1.94Nb0.06O2Se at 823 K, which enlarges by three times in comparison with pristine Bi2O2Se (0.673 μW cm−1 K−2). Combined with the inherently low thermal conductivity, the ZT values of Bi1.94Nb0.06O2Se reach 0.195 at 823 K, corresponding to 325% enhancement. This study shows that the substitution of Nb for Bi is a promising way to optimize the thermoelectric properties of Bi2O2Se-based thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fitriani OR, Long BD, Barma MC, Riaz M, Sabri MFM, Said SM, Saidur R (2016) A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew Sust Energ Rev 64:635–659. https://doi.org/10.1016/j.rser.2016.06.035

    Article  CAS  Google Scholar 

  2. Du Y, Xu J, Paul B, Eklund P (2018) Flexible thermoelectric materials and devices. Appl Mater Today 12:366–388. https://doi.org/10.1016/j.apmt.2018.07.004

    Article  Google Scholar 

  3. Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting IT, Faghaninia A, Chen Y, Jain A, Chen L, Snyder GJ, Pei Y (2018) Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2(5):976–987. https://doi.org/10.1016/j.joule.2018.02.016

    Article  CAS  Google Scholar 

  4. Lee MH, Park S, Lee JK, Chung J, Ryu B, Park S-D, Rhyee J-S (2019) Fine tuning of fermi level by charged impurity-defect cluster formation and thermoelectric properties in n-type PbTe-based compounds. J Mater Chem A 7:16488. https://doi.org/10.1039/c9ta04220b

    Article  CAS  Google Scholar 

  5. Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ (2014) Broad temperature plateau for thermoelectric figure of merit ZT > in phase-separated PbTe0.7S0.3. Nat Commun. https://doi.org/10.1038/ncomms5515

    Article  Google Scholar 

  6. Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder GJ, Pei Y (2017) Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater. https://doi.org/10.1002/adma.201606768

    Article  Google Scholar 

  7. Kang M-G, Cho K-H, Kim J-S, Nahm S, Yoon S-J, Kang C-Y (2014) Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials. Acta Mater 73:251. https://doi.org/10.1016/j.actamat.2014.04.008

    Article  CAS  Google Scholar 

  8. Fergus JW (2012) Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 32(3):525–540. https://doi.org/10.1016/j.jeurceramsoc.2011.10.007

    Article  CAS  Google Scholar 

  9. Ong KP, Singh DJ, Wu P (2011) Analysis of the thermoelectric properties of n-type ZnO. Phys Rev B. https://doi.org/10.1103/PhysRevB.83.115110

    Article  Google Scholar 

  10. Tsubota T, Ohtaki M, Eguchi K, Arai H (1997) Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J Mater Chem 7(1):85–90. https://doi.org/10.1039/a602506d

    Article  CAS  Google Scholar 

  11. Shi X-L, Wu H, Liu Q, Zhou W, Lu S, Shao Z, Dargusch M, Chen Z-G (2020) SrTiO3-based thermoelectrics: progress and challenges. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.105195

    Article  Google Scholar 

  12. Wang J, Zhang B-Y, Kang H-J, Li Y, Yaer X, Li J-F, Tan Q, Zhang S, Fan G-H, Liu C-Y, Miao L, Nan D, Wang T-M, Zhao L-D (2017) Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 35:387. https://doi.org/10.1016/j.nanoen.2017.04.003

    Article  CAS  Google Scholar 

  13. Zhou YQ, Matsubara I, Funahashi R, Xu GJ, Shikano M (2003) Influence of Mn-site doped with Ru on the high-temperature thermoelectric performance of CaMnO3-delta. Mater Res Bull 38(2):341–346. https://doi.org/10.1016/s0025-5408(02)00997-2

    Article  CAS  Google Scholar 

  14. Li F, Li J-F, Zhao LD, Xiang K, Liu Y, Zhang B-P, Lin Y-H, Nan C-W, Zhu H-M (2012) Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci 5(5):7188–7195. https://doi.org/10.1039/c2ee21274a

    Article  CAS  Google Scholar 

  15. Kumar S, Schwingenschlogl U (2016) Lattice thermal conductivity in layered BiCuSeO. Phys Chem Chem Phys 18(28):19158–19164. https://doi.org/10.1039/c6cp02739c

    Article  CAS  Google Scholar 

  16. Zhao L-D, He J, Berardan D, Lin Y, Li J-F, Nan C-W, Dragoe N (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci 7:2900. https://doi.org/10.1039/c4ee00997e

    Article  CAS  Google Scholar 

  17. Li J, Sui J, Pei Y, Barreteau C, Berardan D, Dragoe N, Cai W, He J, Zhao LD (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 5(9):8543–8547. https://doi.org/10.1039/c2ee22622g

    Article  CAS  Google Scholar 

  18. Liu Y, Zhao L-D, Zhu Y, Liu Y, Li F, Yu M, Liu D-B, Xu W, Lin Y-H, Nan C-W (2016) Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv Energy Mater. https://doi.org/10.1002/aenm.201502423

    Article  Google Scholar 

  19. Zhang Z, Chen J, Zhang W, Yu Z, Yu C, Lu H (2020) Systematically investigate mechanical and electrical properties of Bi2O2Se by Te atom substitution and compare it with homologue Bi2O2Te from first-principles calculations. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101182

    Article  Google Scholar 

  20. Sun Y, Zhang J, Ye S, Song J, Qu J (2020) progress report on property, preparation, and application of Bi2O2Se. Adv Funct Mater. https://doi.org/10.1002/adfm.202004480

    Article  Google Scholar 

  21. Zhan B, Liu Y, Tan X, Lan J-l, Lin Y-h, Nan C-W (2015) Enhanced thermoelectric properties of Bi2O2Se ceramics by Bi deficiencies. J Am Ceram Soc 98(8):2465–2469. https://doi.org/10.1111/jace.13619

    Article  CAS  Google Scholar 

  22. Ruleova P, Plechacek T, Kasparova J, Vlcek M, Benes L, Lostak P, Drasar C (2018) Enhanced thermoelectric performance of n-type Bi2O2Se ceramics induced by Ge doping. J Electron Mater 47(2):1459–1466. https://doi.org/10.1007/s11664-017-5952-4

    Article  CAS  Google Scholar 

  23. Liu R, Lan J-l, Tan X, Liu Y-c, Ren G-k, Liu C, Zhou Z-f, Nan C-w, Lin Y-h (2018) Carrier concentration optimization for thermoelectric performance enhancement in n-type Bi2O2Se. J Eur Ceram Soc 38(7):2742–2746. https://doi.org/10.1016/j.jeurceramsoc.2018.02.005

    Article  CAS  Google Scholar 

  24. Zhan B, Butt S, Liu Y, Lan J-L, Nan C-W, Lin Y-H (2015) High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics. J Electroceram 34(2–3):175–179. https://doi.org/10.1007/s10832-014-9969-2

    Article  CAS  Google Scholar 

  25. Tan X, Lan J-l, Ren G, Liu Y, Lin Y-H, Nan C-W (2017) Enhanced thermoelectric performance of n-type Bi2O2Se by Cl-doping at Se site. J Am Ceram Soc 100(4):1494–1501. https://doi.org/10.1111/jace.14726

    Article  CAS  Google Scholar 

  26. Pan L, Zhao L, Zhang X, Chen C, Yao P, Jiang C, Shen X, Lyu Y et al (2019) Significant optimization of electron-phonon transport of n-type Bi2O2Se by mechanical manipulation of Se vacancies via shear exfoliation. ACS Appl Mater Interfaces 11(24):21603–21609. https://doi.org/10.1021/acsami.9b05470

    Article  CAS  Google Scholar 

  27. Pan L, Zhao Z, Yang N, Xing W, Zhang J, Liu Y, Chen C, Li D, Wang Y (2020) Effects of sulfur substitution for oxygen on the thermoelectric properties of Bi2O2Se. J Eur Ceram Soc 40(15):5543–5548. https://doi.org/10.1016/j.jeurceramsoc.2020.07.047

    Article  CAS  Google Scholar 

  28. Pan L, Liu W-D, Zhang J-Y, Shi X-L, Gao H, Liu Q-f, Shen X, Lu C, Wang Y-F, Chen Z-G (2020) Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104394

    Article  Google Scholar 

  29. Tan X, Liu Y, Liu R, Zhou Z, Liu C, Lan J-L, Zhang Q, Lin Y-H, Nan C-W (2019) Synergistical enhancement of thermoelectric properties in n-Type Bi2O2Se by carrier engineering and hierarchical microstructure. Adv Energy Mater. https://doi.org/10.1002/aenm.201900354

    Article  Google Scholar 

  30. Kim M, Park D, Kim J (2021) Enhancement of Bi2O2Se thermoelectric power factor via Nb doping. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156905

    Article  Google Scholar 

  31. Zhan B, Liu Y, Lan J, Zeng C, Lin Y-H, Nan C-W (2015) Enhanced thermoelectric performance of Bi2O2Se with Ag addition. Materials 8(4):1568–1576. https://doi.org/10.3390/ma8041568

    Article  CAS  Google Scholar 

  32. Boller H (1973) Die Kristallstruktur von Bi2O2Se. Montah Chem 104:916–919. https://doi.org/10.1007/BF00903904

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0702100), National Natural Science Foundation of China (21771123), the Program of Introducing Talents of Discipline to Universities (D16002). G.-H. Rao is grateful to the foundation for Guangxi Bagui scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Guo or Xinxin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huo, H., Huang, H. et al. Optimization of electrical and thermal transport properties of layered Bi2O2Se via Nb doping. J Mater Sci 56, 12732–12739 (2021). https://doi.org/10.1007/s10853-021-06089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06089-5

Navigation