Skip to main content
Log in

Experimental and computational investigation of Ti-Nb-Fe-Zr alloys with limited Fe contents for biomedical applications

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Among many β-metastable alloys explored for biomedical applications, alloys from the Ti-Nb-Fe-Zr system present great potential regarding cost and mechanical strength. In this article, we take a new look at the possibility of using Fe as a minor alloying element in the Ti-Nb-Fe-Zr system, with additions up to 2.0 wt% Fe. Additional compositions fixing the Nb/Fe ratio and changing Zr content from 7–13 wt% were also explored, resulting in a total of five different alloys. The samples were solution-treated and then subjected to three different conditions: water-quenched, furnace-cooled, and step-quenched to 450 ºC for 12 h. Resultant microstructures were analyzed using X-ray diffraction, differential scanning calorimetry, scanning, and transmission electron microscopy. DSC experiments indicate that Zr might alter the phase transformations that occur during heating and cooling cycles. First-principles calculations confirmed that Zr's addition is crucial to reduce the elastic modulus of the β matrix and increase the ω-phase formation energy relative to β. All alloys presented mechanical properties suitable for biomedical applications; however, Ti-23Nb-2.0Fe-10Zr (wt %) stands out with the best combination of mechanical strength and elastic modulus after aging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Marvel CJ, Sabol JC, Pasang T et al (2017) Improving the mechanical properties of the fusion zone in electron-beam welded Ti-5Al-5Mo-5V-3Cr Alloys. Metall Mater Trans A 48:1921–1930. https://doi.org/10.1007/s11661-017-3968-2

    Article  CAS  Google Scholar 

  2. Kolli R, Devaraj A (2018) A review of metastable beta titanium alloys. Metals (Basel) 8:506. https://doi.org/10.3390/met8070506

    Article  CAS  Google Scholar 

  3. Devaraj A, Joshi VV, Srivastava A et al (2016) A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat Commun 7:11176. https://doi.org/10.1038/ncomms11176

    Article  CAS  Google Scholar 

  4. Franti GW, Williams JC, Aaronson HI (1978) A survey of eutectoid decomposition in ten Ti-X systems. Metall Trans A 9:1641–1649. https://doi.org/10.1007/BF02661947

    Article  Google Scholar 

  5. Lee HJ, Aaronson HI (1988) Eutectoid decomposition mechanisms in hypoeutectoid Ti-X alloys. J Mater Sci 23:150–160. https://doi.org/10.1007/BF01174047

    Article  CAS  Google Scholar 

  6. Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Mater Sci Eng C 25:357–362. https://doi.org/10.1016/j.msec.2004.12.013

    Article  CAS  Google Scholar 

  7. ASTM International (2013) Standard Specification for Wrought Titanium-12Molybdenum-6Zirconium-2Iron Alloy for Surgical Implant (UNS R58120). https://doi.org/10.1520/F1813-13.2

  8. Lee CM, Ho WF, Ju CP, Chern Lin JH (2002) Structure and properties of Titanium-25 Niobium-x iron alloys. J Mater Sci Mater Med 13:695–700

    Article  CAS  Google Scholar 

  9. Hsu H-C, Hsu S-K, Wu S-C et al (2010) Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys. Mater Charact 61:851–858. https://doi.org/10.1016/j.matchar.2010.05.003

    Article  CAS  Google Scholar 

  10. Lopes ÉSN, Salvador CAF, Andrade DR et al (2016) Microstructure, mechanical properties, and electrochemical behavior of Ti-Nb-Fe alloys applied as biomaterials. Metall Mater Trans A 47:3213–3226. https://doi.org/10.1007/s11661-016-3411-0

    Article  CAS  Google Scholar 

  11. Cui WF, Guo AH (2009) Microstructures and properties of biomedical TiNbZrFe β-titanium alloy under aging conditions. Mater Sci Eng A 527:258–262. https://doi.org/10.1016/j.msea.2009.08.057

    Article  CAS  Google Scholar 

  12. Xue P, Li Y, Li K et al (2015) Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy. Mater Sci Eng C 50:179–186. https://doi.org/10.1016/j.msec.2015.02.004

    Article  CAS  Google Scholar 

  13. Nocivin A, Cinca I, Raducanu D et al (2017) Mechanical properties of a Gum-type Ti–Nb–Zr–Fe–O alloy. Int J Miner Metall Mater 24:909–917. https://doi.org/10.1007/s12613-017-1477-3

    Article  CAS  Google Scholar 

  14. Dal Bó MR, Salvador CAF, Mello MG et al (2018) The effect of Zr and Sn additions on the microstructure of Ti-Nb-Fe gum metals with high elastic admissible strain. Mater Des 160:1186–1195. https://doi.org/10.1016/j.matdes.2018.10.040

    Article  CAS  Google Scholar 

  15. Esteban PG, Ruiz-Navas EM, Gordo E (2010) Influence of Fe content and particle size the on the processing and mechanical properties of low-cost Ti–xFe alloys. Mater Sci Eng A 527:5664–5669. https://doi.org/10.1016/j.msea.2010.05.026

    Article  CAS  Google Scholar 

  16. Kent D, Pas S, Zhu S et al (2012) Thermal analysis of precipitation reactions in a Ti–25Nb–3Mo–3Zr–2Sn alloy. Appl Phys A 107:835–841. https://doi.org/10.1007/s00339-012-6778-9

    Article  CAS  Google Scholar 

  17. Kresse G, Furthmiiller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set av *. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  18. Van De Walle A, Tiwary P, De Jong M et al (2013) Efficient stochastic generation of special quasirandom structures. Calphad 42:13–18. https://doi.org/10.1016/j.calphad.2013.06.006

    Article  CAS  Google Scholar 

  19. Von Pezold J, Dick A, Friák M, Neugebauer J (2010) Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti. Phys Rev B-Condens Matter Mater Phys 81:1–7. https://doi.org/10.1103/PhysRevB.81.094203

    Article  CAS  Google Scholar 

  20. Gaillac R, Pullumbi P, Coudert FX (2016) ELATE: An open-source online application for analysis and visualization of elastic tensors. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/28/27/275201

    Article  Google Scholar 

  21. Momma K, Izumi F (2008) VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658. https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

  22. Todd R, Armstrong D (2006) Gum metal and related alloys. In: Encyclopedia of materials: science and technology. Elsevier, Amsterdam, pp 1–4. https://doi.org/10.1016/B978-0-12-803581-8.11538-3

  23. Saito T, Furuta T, Hwang J-H et al (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300:464–467. https://doi.org/10.1126/science.1081957

    Article  CAS  Google Scholar 

  24. Cotton JD, Briggs RD, Boyer RR et al (2015) State of the art in beta titanium alloys for airframe applications. JOM 67:1281–1303. https://doi.org/10.1007/s11837-015-1442-4

    Article  CAS  Google Scholar 

  25. da Costa FHFH, Salvador CAFCAF, de Mello MGMG, Caram R (2016) Alpha phase precipitation in Ti-30Nb-1Fe alloys–phase transformations in continuous heating and aging heat treatments. Mater Sci Eng A 677:222–229. https://doi.org/10.1016/j.msea.2016.09.023

    Article  CAS  Google Scholar 

  26. Salvador CAFF, Lopes ESNN, Caram R et al (2017) Solute lean Ti-Nb-Fe alloys: an exploratory study. J Mech Behav Biomed Mater 65:761–769. https://doi.org/10.1016/j.jmbbm.2016.09.024

    Article  CAS  Google Scholar 

  27. Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844–879. https://doi.org/10.1016/j.actamat.2012.10.043

    Article  CAS  Google Scholar 

  28. Salvador CAF, Opini VC, Lopes ESN, Caram R (2017) Microstructure evolution of Ti–30Nb–(4Sn) alloys during classical and step-quench aging heat treatments. Mater Sci Technol 33:400–407. https://doi.org/10.1080/02670836.2016.1216030

    Article  CAS  Google Scholar 

  29. Ozan S, Lin J, Li Y et al (2015) Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomater 20:176–187. https://doi.org/10.1016/j.actbio.2015.03.023

    Article  CAS  Google Scholar 

  30. Min XH, Emura S, Zhang L, Tsuzaki K (2008) Effect of Fe and Zr additions on ω phase formation in β-type Ti–Mo alloys. Mater Sci Eng A 497:74–78. https://doi.org/10.1016/j.msea.2008.06.018

    Article  CAS  Google Scholar 

  31. Banerjee R, Nag S, Stechschulte J, Fraser HL (2004) Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 25:3413–3419. https://doi.org/10.1016/j.biomaterials.2003.10.041

    Article  CAS  Google Scholar 

  32. Dobromyslov AV, Elkin VA (2001) Martensitic transformation and metastable beta-phase in binary titanium alloys with d-metals of 4–6 periods. Scr Mater 44:905–910

    Article  CAS  Google Scholar 

  33. Fu Y, Xiao W, Wang J et al (2020) Oxygen induced crystal structure transition of martensite in Ti–Nb–Fe alloys. Mater Lett 262:127026. https://doi.org/10.1016/j.matlet.2019.127026

    Article  CAS  Google Scholar 

  34. Opini VC, Salvador CAF, Campo KN et al (2016) α phase precipitation and mechanical properties of Nb-modified Ti-5553 alloy. Mater Sci Eng A 670:112–121. https://doi.org/10.1016/j.msea.2016.06.001

    Article  CAS  Google Scholar 

  35. Choudhuri D, Zheng Y, Alam T et al (2017) Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy. Acta Mater 130:215–228. https://doi.org/10.1016/j.actamat.2017.03.047

    Article  CAS  Google Scholar 

  36. Li M, Min X (2020) Origin of ω-phase formation in metastable β-type Ti-Mo alloys: cluster structure and stacking fault. Sci Rep 10:8664. https://doi.org/10.1038/s41598-020-65254-z

    Article  CAS  Google Scholar 

  37. Withey EA, Minor AM, Chrzan DC et al (2010) The deformation of gum metal through in situ compression of nanopillars. Acta Mater 58:2652–2665. https://doi.org/10.1016/j.actamat.2009.12.052

    Article  CAS  Google Scholar 

  38. Gutierrez-Urrutia I, Li C-L, Emura S et al (2016) Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x = 1–3) alloy by ECCI and EBSD. Sci Technol Adv Mater 17:220–228. https://doi.org/10.1080/14686996.2016.1177439

    Article  CAS  Google Scholar 

  39. Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18:584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  CAS  Google Scholar 

  40. Van Stone RH, Low JR, Shannon JL (1978) Investigation of the fracture mechanism of Ti-5AI-2.5 Sn at cryogenic temperatures. Metall Trans A 9:539–552

    Article  Google Scholar 

  41. Salvador CAF, Opini VC, Mello MG, Caram R (2018) Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy. Mater Sci Eng A 743:716–725. https://doi.org/10.1016/j.msea.2018.11.086

    Article  CAS  Google Scholar 

  42. Biesiekierski A, Lin J, Li Y et al (2016) Investigations into Ti–(Nb, Ta)–Fe alloys for biomedical applications. Acta Biomater 32:336–347. https://doi.org/10.1016/j.actbio.2015.12.010

    Article  CAS  Google Scholar 

  43. Wang X, Zhang L, Guo Z et al (2016) Study of low-modulus biomedical β Ti–Nb–Zr alloys based on single-crystal elastic constants modeling. J Mech Behav Biomed Mater 62:310–318. https://doi.org/10.1016/j.jmbbm.2016.04.040

    Article  CAS  Google Scholar 

  44. Talling RJ, Dashwood RJ, Jackson M, Dye D (2009) Compositional variability in gum metal. Scr Mater 60:1000–1003. https://doi.org/10.1016/j.scriptamat.2009.02.044

    Article  CAS  Google Scholar 

  45. Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater 55:477–480. https://doi.org/10.1016/j.scriptamat.2006.04.022

    Article  CAS  Google Scholar 

  46. Abdel-Hady M, Fuwa H, Hinoshita K et al (2007) Phase stability change with Zr content in β-type Ti–Nb alloys. Scr Mater 57:1000–1003. https://doi.org/10.1016/j.scriptamat.2007.08.003

    Article  CAS  Google Scholar 

  47. Majumdar P, Singh SB, Chakraborty M (2011) The role of heat treatment on microstructure and mechanical properties of Ti–13Zr–13Nb alloy for biomedical load bearing applications. J Mech Behav Biomed Mater 4:1132–1144. https://doi.org/10.1016/j.jmbbm.2011.03.023

    Article  CAS  Google Scholar 

  48. Biesiekierski A, Lin J, Li Y et al (2016) Investigations into Ti-(Nb, Ta)-Fe alloys for biomedical applications. Acta Biomater 32:336–347. https://doi.org/10.1016/j.actbio.2015.12.010

    Article  CAS  Google Scholar 

  49. Gepreel MA, Niinomi M, Abdel-Hady Gepreel M et al (2013) Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater 20:407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPESP (Sao Paulo Research Foundation, Grant 2014/24449-0) and CNPq (Brazilian National Council for Scientific and Technological Development, Grant 155650/2018-1). The authors would like to acknowledge the LNNano/CNPEM/Brazil for technical support during the electron microscopy work. The authors thank CBMM for providing the niobium used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo A. F. Salvador.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, C.A.F., Dal Bo, M.R., Lima, D.D. et al. Experimental and computational investigation of Ti-Nb-Fe-Zr alloys with limited Fe contents for biomedical applications. J Mater Sci 56, 11494–11510 (2021). https://doi.org/10.1007/s10853-021-06002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06002-0

Navigation