Skip to main content

Advertisement

Log in

Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10–4 to 3.95*10–4 S cm−1. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g−1 and acceptable cycling performance (77.8 mAh g−1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  2. Goodenough JB (2018) How we made the Li-ion rechargeable battery. Nat Electron 1(3):204–204

    Article  Google Scholar 

  3. Zhou C, Bag S, Thangadurai V (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3(9):2181–2198

    Article  CAS  Google Scholar 

  4. Cao XG, Zhang XH, Tao T, Zhang HY (2020) Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes. Ceram Int 46(6):8405–8412

    Article  CAS  Google Scholar 

  5. Raut P, Li S, Chen Y-M, Zhu Y, Jana SC (2019) Strong and flexible composite solid polymer electrolyte membranes for Li-ion batteries. ACS Omega 4(19):18203–18209

    Article  CAS  Google Scholar 

  6. Wang F, Li L, Yang X, You J, Xu Y, Wang H, Ma Y, Gao G (2018) Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain Energy Fuels 2:492–498

    Article  CAS  Google Scholar 

  7. Bag S, Zhou C, Kim PJ, Pol VG, Thangadurai V (2020) LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Mater 24:198–207

    Article  Google Scholar 

  8. Rajendran S, Uma T (2000) Characterization of plasticized PMMA-LiBF4 based solid polymer electrolytes. Bull Mater Sci 23(1):27–29

    Article  CAS  Google Scholar 

  9. Lim Y, Jung HA, Hwang H (2018) Fabrication of PEO-PMMA-LiClO4 -based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies 11(10):2559

    Article  Google Scholar 

  10. Yu X, Xue L, Goodenough JB, Manthiram A (2019) A high-performance all-solid-state sodium battery with a poly(ethylene oxide)–Na3Zr2Si2PO12 composite electrolyte. ACS Mater Lett 1(1):132–138

    Article  CAS  Google Scholar 

  11. Wu J-F, Yu Z-Y, Wang Q, Guo X (2020) High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Mater 24:467–471

    Article  Google Scholar 

  12. Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu YS, Zhou ZB, Li H, Huang X, Chen L (2016) A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A 4:15823–15828

    Article  CAS  Google Scholar 

  13. Shojaatalhosseini M, Elamin K, Swenson J (2017) Conductivity—relaxation relations in nanocomposite polymer electrolytes containing ionic liquid. J Phys Chem B 121(41):9699–9707

    Article  CAS  Google Scholar 

  14. Yang L, Lin J, Wang Z, Wang C, Zhou R, Liu Q (1990) Effects of plasticizers on properties of poly(ethylene oxide) complex electrolytes. Solid State Ionics 40–41:616–619

    Article  Google Scholar 

  15. Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7(1):75–79

    Article  CAS  Google Scholar 

  16. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781

    Article  CAS  Google Scholar 

  17. Philipp B, Sebastian J, Klaus Z, JöRn SDGN, Stefanie D, Bernhard R (2013) Li10SnP2S12 - an affordable lithium superionic conductor. J Am Chem Soc 135(42):15694–15697

    Article  Google Scholar 

  18. Jinisha B, Anil Kumar KM, Manoh MM, Pradeep V, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222

    Article  CAS  Google Scholar 

  19. Zhang J, Yue L, Hu P, Liu Z, Qin B, Zhang B, Wang Q, Ding G, Zhang C, Zhou X, Yao J, Cui G, Chen L (2014) Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Sci Rep 4(1):6272

    Article  CAS  Google Scholar 

  20. Gao R, Tan R, Han L, Zhao Y, Pan F (2017) Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J Mater Chem A 5(11):5273–5277

    Article  CAS  Google Scholar 

  21. Moreno JS, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702

    Article  Google Scholar 

  22. Pandey GP, Hashmi SA, Agrawal RC (2008) Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics Diffus React 179(15–16):543–549

    Article  CAS  Google Scholar 

  23. Bhattacharya S, Ghosh A (2008) Effect of ZnO Nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites. J Nanosci Nanotechnol 8(4):1922–1926

    Article  CAS  Google Scholar 

  24. Xiong HM, Wang ZD, Xie DP, Cheng L, Xia YY (2006) Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. J Mater Chem 16(14):1345–1349

    Article  CAS  Google Scholar 

  25. Miao R, Yang J, Xu Z, Wang J, Nuli Y, Sun L (2016) A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci Rep 6:21771

    Article  CAS  Google Scholar 

  26. Choi JH, Lee CH, Yu JH, Doh CH, Lee SM (2015) Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 274:458–463

    Article  CAS  Google Scholar 

  27. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46:176–184

    Article  CAS  Google Scholar 

  28. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2016) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Article  Google Scholar 

  29. Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G (2018) Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater 15:46–52

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51777138) and Natural Science Foundation of Tianjin City (Nos. 18JCZDJC99700, 18JCYBJC87400 and 18JCQNJC73900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Chen or Zhiyong Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Liu, Z., Wang, X. et al. Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries. J Mater Sci 56, 9951–9960 (2021). https://doi.org/10.1007/s10853-021-05885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05885-3

Navigation