Skip to main content

Advertisement

Log in

Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured covalent organic frameworks (COFs) have attracted great attentions over the past few decades due to their unique physical and chemical properties. Crystallization is sought in many application fields since it allows enhancing or even promoting properties of catalysis, energy storage and photoelectric properties. However, the crystallization process of nanostructured COFs remains to be challenging. Synthetic approaches to establish nucleation and elongation growth of COFs for controlling crystallization have drawn substantial amount of attentions. Nanostructured COFs have exhibited significant advantages when applied in (electro)photocatalysis and energy storage devices as well. In this review, recent progress in precisely design strategy of fabricating various nanostructured COFs and their applications as (electro)photocatalyzer and energy storage devices are summarized. After a brief introduction of the design principles, composition and interior architecture, the morphology of nanostructured COFs including porous and mesoporous stacked-layer structure, nanosheet structure, nanorod structure, ordered stripe arrays and various nanocomposites are thoroughly described. Reactions dedicated to crystallization process for two-dimensional (2D) COFs are discussed further. Then, the applications of nanostructured COFs as (electro)photocatalysis and energy storage devices are demonstrated. Finally, the potential advantages and challenges for the synthetic technology of nanostructured COFs materials are particularly discussed. Personal insights into the challenges and opportunities on pursuing topologies as hollow structures, dense spheres, yolk–shell structures were raised to broaden the applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Copyright 2018, Royal Society of Chemistry

Figure 6
Figure 7

Copyright 2018, American Chemical Society

Figure 8

Copyright 2018, Royal Society of Chemistry

Figure 9

Copyright 2019, Royal Society of Chemistry

Figure 10

Copyright 2018, Royal Society of Chemistry

Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References:

  1. Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z (2019) Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev 48(11):3015–3072

    CAS  Google Scholar 

  2. Vilela F, Zhang K, Antonietti M (2012) Conjugated porous polymers for energy applications. Energy Environ Sci 5(7):7819–7832

    CAS  Google Scholar 

  3. He S, Rong Q, Niu H, Cai Y (2019) Platform for molecular-material dual regulation: A direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl Catal B 247:49–56

    CAS  Google Scholar 

  4. Mannix AJ, Kiraly B, Hersam MC, Guisinger NP (2017) Synthesis and chemistry of elemental 2D materials. Nat Rev Chem 1(2):1–4

    Google Scholar 

  5. Das S, Heasman P, Ben T, Qiu S (2017) Porous organic materials: strategic design and structure-function correlation. Chem Rev 117(3):1515–1563

    CAS  Google Scholar 

  6. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH et al (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    CAS  Google Scholar 

  7. Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y (2018) Progress in research into 2D graphdiyne-based materials. Chem Rev 118(16):7744–7803

    CAS  Google Scholar 

  8. Wang S, Robertson A, Warner JH (2018) Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem Soc Rev 47(17):6764–6794

    CAS  Google Scholar 

  9. Liu XH, Guan CZ, Wang D, Wan LJ (2014) Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv Mater 26(40):6912–6920

    CAS  Google Scholar 

  10. Jiang L, Yuan X, Zeng G, Liang J, Wu Z, Yu H, Mo D, Wang H, Xiao Z, Zhou C (2019) Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. J Colloid Interface Sci 536:17–29

    CAS  Google Scholar 

  11. Kim KK, Lee HS, Lee YH (2018) Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chem Soc Rev 47(16):6342–6367

    CAS  Google Scholar 

  12. Uppuluri R, Sen Gupta A, Rosas AS, Mallouk TE (2018) Soft chemistry of ion-exchangeable layered metal oxides. Chem Soc Rev 47(7):2401–2430

    CAS  Google Scholar 

  13. Dhakshinamoorthy A, Garcia H (2014) Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem Soc Rev 43(16):5750–5767

    CAS  Google Scholar 

  14. Xia Q, Wang H, Huang B, Yuan X, Zhang J, Zhang J, Jiang L, Xiong T, Zeng G (2019) State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications. Small 15(1803088):1–25

    CAS  Google Scholar 

  15. Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42(2):548–569

    CAS  Google Scholar 

  16. Witherspoon VJ, Xu J, Reimer JA (2018) Solid-state NMR investigations of carbon dioxide gas in metal-organic frameworks: insights into molecular motion and adsorptive behavior. Chem Rev 118(20):10033–10048

    CAS  Google Scholar 

  17. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H (2018) Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev 47(16):6267–6295

    CAS  Google Scholar 

  18. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47(22):8349–8402

    CAS  Google Scholar 

  19. Cao S, Li B, Zhu R, Pang H (2019) Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 355:602–623

    CAS  Google Scholar 

  20. Browne MP, Sofer Z, Pumera M (2019) Layered and two dimensional metal oxides for electrochemical energy conversion. Energy Environ Sci 12(1):41–45

    CAS  Google Scholar 

  21. Kumar R, Joanni E, Singh RK, Singh DP, Moshkalev SA (2018) Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog Energy Combust Sci 67:115–157

    Google Scholar 

  22. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43(16):6011–6061

    CAS  Google Scholar 

  23. Gamal M, Atayde EC, Matsagar BM, Na J, Yamauchi Y, Wu KC, Kuo S (2020) Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework. J Taiwan Inst Chem Eng 112:30–34

    Google Scholar 

  24. Krishnaraj C, Jena HS, Bourda L, Laemont A, Pachfule P, Chandran CV, Borgmans S, Rogge SMJ, Leus K, Stevens CV, Martens JA, Speybroeck VV, Breynaert E, Thomas A, Van Der Voort P (2020) Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J Am Chem Soc 142:20107–20116

    CAS  Google Scholar 

  25. Cao S, Li B, Zhu R, Pang H (2019) Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 2018(355):602–623

    Google Scholar 

  26. Liu C, Bai Y, Zhao Y, Yao H, Pang H (2020) MoS2/graphene composites: fabrication and electrochemical energy storage. Energy Storage Mater 33:470–502

    Google Scholar 

  27. Wang HF, Chen L, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49:1414–1448

    CAS  Google Scholar 

  28. Wang J, Li N, Xu Y, Pang H (2020) Two-dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry. Chem Eur J 26(29):6402–6422

  29. Mandal AK, Mahmood J, Baek J-B (2017) Two-dimensional covalent organic frameworks for optoelectronics and energy storage. Chem NanoMater 3(6):373–391

    CAS  Google Scholar 

  30. Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mater 28(1705553):1–71

    Google Scholar 

  31. Ji W, Sun R, Geng Y, Liu W, Wang X (2018) Rapid, low temperature synthesis of molecularly imprinted covalent organic frameworks for the highly selective extraction of cyano pyrethroids from plant samples. Anal Chim Acta 1001:179-188

    CAS  Google Scholar 

  32. Waller PJ, Gandara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48(12):3053–3063

    CAS  Google Scholar 

  33. Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C et al (2019) Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev 48(2):488–516

    CAS  Google Scholar 

  34. Segura JL, Mancheno MJ, Zamora F (2016) Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 45(20):5635–5671

    CAS  Google Scholar 

  35. Popov DA, Luna JM, Orchanian NM, Haiges R, Downes CA, Marinescu SC (2018) A 2,2’-bipyridine-containing covalent organic framework bearing rhenium(i) tricarbonyl moieties for CO2 reduction. Dalton Trans 47(48):17450–17460

    CAS  Google Scholar 

  36. Mellah A, Fernandes SPS, Rodriguez R, Otero J, Paz J, Cruces J, Medina DD, Djamila H, Espina B, Salonen LM (2018) Adsorption of pharmaceutical pollutants from water using covalent organic frameworks. Chemistry 24(42):10601–10605

    CAS  Google Scholar 

  37. Fan H, Mundstock A, Gu J, Meng H, Caro J (2018) An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation. J Mater Chem A 6(35):16849–16853

    CAS  Google Scholar 

  38. Roy A, Mondal S, Halder A, Banerjee A, Ghoshal D, Paul A, Malik S (2017) Benzimidazole linked arylimide based covalent organic framework as gas adsorbing and electrode materials for supercapacitor application. Eur Polym J 93:448–457

    CAS  Google Scholar 

  39. Rao MR, Fang Y, De Feyter S, Perepichka DF (2017) Conjugated covalent organic frameworks via michael addition-elimination. J Am Chem Soc 139(6):2421–2427

    CAS  Google Scholar 

  40. Zhao W, Xia L, Liu X (2018) Covalent organic frameworks (COFs): perspectives of industrialization. Cryst Eng Commun 20(12):1613–1634

    CAS  Google Scholar 

  41. Zhu L, Zhang YB (2017) Crystallization of covalent organic frameworks for gas storage applications. Molecules 22(1149):1–27

    Google Scholar 

  42. Wang J, Li J, Gao M, Zhang X (2018) Recent advances in covalent organic frameworks for separation and analysis of complex samples. TrAC Trends Anal Chem 108:98–109

    Google Scholar 

  43. Zhang Y, Riduan SN, Wang J (2017) Redox active metal- and covalent organic frameworks for energy storage: balancing porosity and electrical conductivity. Chemistry 23(65):16419–16431

    CAS  Google Scholar 

  44. Kong W, Jia W, Wang R, Gong Y, Wang C, Wu P, Guo J (2018) Amorphous-to-crystalline transformation toward controllable synthesis of fibrous covalent organic frameworks enabling promotion of proton transport. Chem Commun 55(1):75–78

    Google Scholar 

  45. Haldar S, Chakraborty D, Roy B, Banappanavar G, Rinku K, Mullangi D, Hazra P, Kabra D, Vaidhyanathan R (2018) Anthracene-resorcinol derived covalent organic framework as flexible white light emitter. J Am Chem Soc 140(41):13367–13374

    CAS  Google Scholar 

  46. Mo YP, Liu XH, Wang D (2017) Concentration-directed polymorphic surface covalent organic frameworks: rhombus, parallelogram, and kagome. ACS Nano 11(11):11694–11700

    CAS  Google Scholar 

  47. Waller PJ, AlFaraj YS, Diercks CS, Jarenwattananon NN, Yaghi OM (2018) Conversion of Imine to oxazole and thiazole linkages in covalent organic frameworks. J Am Chem Soc 140(29):9099–9103

    CAS  Google Scholar 

  48. Lin CY, Zhang L, Zhao Z, Xia Z (2017) Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv Mater 29(1606635):1–7

    Google Scholar 

  49. Jin E, Li J, Geng K, Jiang Q, Xu H, Xu Q, Jiang D (2018) Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nat Commun 9(4143):1–10

    Google Scholar 

  50. Hynek J, Zelenka J, Rathousky J, Kubat P, Ruml T, Demel J, Lang K (2018) Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl Mater Interfaces 10(10):8527–8535

    CAS  Google Scholar 

  51. El-Mahdy AFM, Kuo C-H, Alshehri A, Young C, Yamauchi Y, Kim J, Kuo S-W (2018) Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. J Mater Chem A 6(40):19532–19541

    CAS  Google Scholar 

  52. Ascherl L, Sick T, Margraf JT, Lapidus SH, Calik M, Hettstedt C, Karaghiosoff K, Döblinger M, Clark T, Chapman KW et al (2016) Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat Chem 8(4):310–316

    CAS  Google Scholar 

  53. Halder A, Kandambeth S, Biswal BP, Kaur G, Roy NC, Addicoat M, Salunke JK, Banerjee S, Vanka K, Heine T et al (2016) Decoding the morphological diversity in two dimensional crystalline porous polymers by core planarity modulation. Angew Chem Int Ed 55(27):7806–7810

    CAS  Google Scholar 

  54. Qian C, Qi QY, Jiang GF, Cui FZ, Tian Y, Zhao X (2017) Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange. J Am Chem Soc 139(19):6736–6743

    CAS  Google Scholar 

  55. Wang Q, Wu H, Lv F, Cao Y, Zhou Y, Gan N (2018) A headspace sorptive extraction method with magnetic mesoporous titanium dioxide@covalent organic frameworks composite coating for selective determination of trace polychlorinated biphenyls in soils. J Chromatogr A 1572:1–8

    CAS  Google Scholar 

  56. Qian C, Liu E-C, Qi Q-Y, Xu K, Jiang G-F, Zhao X (2018) A design strategy for the construction of 2D heteropore covalent organic frameworks based on the combination of C2v and D3h symmetric building blocks. Polym Chem 9(3):279–283

    CAS  Google Scholar 

  57. Allendorf MD, Hulvey Z, Gennett T, Ahmed A, Autrey T, Camp J, Seon Cho E, Furukawa H, Haranczyk M, Head-Gordon M et al (2018) An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ Sci 11(10):2784–2812

    CAS  Google Scholar 

  58. Lv H, Zhao X, Niu H, He S, Tang Z, Wu F, Giesy JP (2019) Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J Hazard Mater 369:494–502

    CAS  Google Scholar 

  59. Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S (2019) Chemically stable polyarylether-based covalent organic frameworks. Nat Chem 11(6):587–594

    CAS  Google Scholar 

  60. Zhang W, Zhang L, Zhao H, Li B, Ma H (2018) A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J Mater Chem A 6(27):13331–13339

    CAS  Google Scholar 

  61. Wang Z, Li Y, Liu P, Qi Q, Zhang F, Lu G, Zhao X, Huang X (2019) Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 11(12):5330–5335

    CAS  Google Scholar 

  62. Huang N, Wang P, Jiang D (2016) Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 1(10):1–9

    Google Scholar 

  63. Hashemzadeh H, Raissi H (2018) Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: a DFT calculations and molecular dynamics simulation study. J Phys D Appl Phys 51(345401):1–10

    Google Scholar 

  64. Xu SQ, Liang RR, Zhan TG, Qi QY, Zhao X (2017) Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds. Chem Commun 53(16):2431–2434

    CAS  Google Scholar 

  65. Zhao Y, Guo L, Gandara F, Ma Y, Liu Z, Zhu C, Lyu H, Trickett CA, Kapustin EA, Terasaki O et al (2017) A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J Am Chem Soc 139(37):13166–13172

    CAS  Google Scholar 

  66. Qian H-L, Li Y, Yan X-P (2018) A building block exchange strategy for the rational fabrication of de novo unreachable amino-functionalized imine-linked covalent organic frameworks. J Mater Chem A 6(36):17307–17311

    CAS  Google Scholar 

  67. Wang J, Si L, Wei Q, Hong X, Lin L, Li X, Chen J, Wen P, Cai Y (2019) An imine-linked covalent organic framework as the host material for sulfur loading in lithium–sulfur batteries. J Energy Chem 28:54–60

    Google Scholar 

  68. Yao CL, Li JC, Gao W, Jiang Q (2018) An integrated design with new metal-functionalized covalent organic frameworks for the effective electroreduction of CO2. Chemistry 24(43):11051–11058

    CAS  Google Scholar 

  69. Gao Q, Li X, Ning G-H, Xu H-S, Liu C, Tian B, Tang W, Loh KP (2018) Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage. Chem Mater 30(5):1762–1768

    CAS  Google Scholar 

  70. Liang R-R, Zhao X (2018) Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities. Org Chem Front 5(22):3341–3356

    CAS  Google Scholar 

  71. Xue R, Guo H, Wang T, Gong L, Wang Y, Ai J, Huang D, Chen H, Yang W (2017) Fluorescence properties and analytical applications of covalent organic frameworks. Anal Methods 9(25):3737–3750

    CAS  Google Scholar 

  72. Nguyen V, Grunwald M (2018) Microscopic origins of poor crystallinity in the synthesis of covalent organic framework COF-5. J Am Chem Soc 140(9):3306–3310

    CAS  Google Scholar 

  73. Xu L, Ding S-Y, Liu J, Sun J, Wang W, Zheng Q-Y (2016) Highly crystalline covalent organic frameworks from flexible building blocks. Chem Commun 52(25):4706–4709

    CAS  Google Scholar 

  74. Li H, Qi Q-Y, Zhao X, Li G, Chen X, Zhang H-J, Lin J (2018) Synthesis of novel 2D in-plane anisotropic covalent organic frameworks through a solvent modulated orthogonal strategy. Polym Chem 9(32):4288–4293

    CAS  Google Scholar 

  75. Ma T, Li J, Niu J, Zhang L, Etman AS, Lin C, Shi D, Chen P, Li LH, Du X et al (2018) Observation of interpenetration isomerism in covalent organic frameworks. J Am Chem Soc 140(22):6763–6766

    CAS  Google Scholar 

  76. Gao Q, Li X, Ning G-H, Leng K, Tian B, Liu C, Tang W, Xu H-S, Loh KP (2018) Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chem Commun 54(19):2349–2352

    CAS  Google Scholar 

  77. Li Z, Huang N, Lee KH, Feng Y, Tao S, Jiang Q, Nagao Y, Irle S, Jiang D (2018) Light-emitting covalent organic frameworks: fluorescence improving via pinpoint surgery and selective switch-on sensing of anions. J Am Chem Soc 140(39):12374–12377

    CAS  Google Scholar 

  78. Zhang J (2018) Phase transformation in two-dimensional covalent organic frameworks under compressive loading. Phys Chem Chem Phys 20(46):29462–29471

    CAS  Google Scholar 

  79. Xu S-Q, Zhan T-G, Wen Q, Pang Z-F, Zhao X (2016) Diversity of covalent organic frameworks (COFs): A 2D COF containing two kinds of triangular micropores of different sizes. Acs Macro Lett 5(1):99–102

    CAS  Google Scholar 

  80. Li Y, Xu X, Hou S, Ma J, Lu T, Wang J, Yao Y, Pan L (2018) Facile dual doping strategy via carbonization of covalent organic frameworks to prepare hierarchically porous carbon spheres for membrane capacitive deionization. Chem Commun 54(99):14009–14012

    CAS  Google Scholar 

  81. Ding SY, Cui XH, Feng J, Lu G, Wang W (2017) Facile synthesis of -C[double bond, length as m-dash] N- linked covalent organic frameworks under ambient conditions. Chem Commun 53(87):11956–11959

    CAS  Google Scholar 

  82. Yan Z, Hu B, Li Q, Zhang S, Pang J, Wu C (2019) Facile synthesis of covalent organic framework incorporated electrospun nanofiber and application to pipette tip solid phase extraction of sulfonamides in meat samples. J Chromatogr A 1584:33–41

    CAS  Google Scholar 

  83. Chen L, Zhang M, Fu F, Li J, Lin Z (2018) Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine. J Chromatogr A 1567:136–146

    CAS  Google Scholar 

  84. Xu Y, Vermeulen NA, Liu Y, Hupp JT, Farha OK (2016) SALE-Ing a MOF-Based “Ship of Theseus:” sequential building-block replacement for complete reformulation of a pillared-paddlewheel metal-organic framework. Eur J Inorg Chem. 27:4345–4348. 4https://doi.org/10.1002/ejic.201600069

    Article  CAS  Google Scholar 

  85. Krüger M, Albat M, Inge AK, Stock N (2017) Investigation of the effect of polar functional groups on the crystal structures of indium MOFs. Cryst Eng Commun 19(31):4622–4628

    Google Scholar 

  86. Li Z, Ding X, Feng Y, Feng W, Han B-H (2019) Structural and dimensional transformations between covalent organic frameworks via linker exchange. Macromolecules 52(3):1257–1265

    Google Scholar 

  87. Liu Z, Wang H, Ou J, Chen L, Ye M (2018) Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol a removal. J Hazard Mater 355:145–153

    CAS  Google Scholar 

  88. Kanti Das S, Mishra S, Manna K, Kayal U, Mahapatra S, Das Saha K, Dalapati S, Das GP, Mostafa AA, Bhaumik A (2018) A new triazine based pi-conjugated mesoporous 2D covalent organic framework: its in vitro anticancer activities. Chem Commun 54(81):11475–11478

    CAS  Google Scholar 

  89. Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J (2018) A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed Engl 57(30):9443–9446

    CAS  Google Scholar 

  90. Sasmal HS, Aiyappa HB, Bhange SN, Karak S, Halder A, Kurungot S, Banerjee R (2018) Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew Chem Int Ed Engl 57(34):10894–10898

    CAS  Google Scholar 

  91. Liu JM, Wang XZ, Zhao CY, Hao JL, Fang GZ, Wang S (2018) Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix. J Hazard Mater 344:220–229

    CAS  Google Scholar 

  92. Li Y, Zhang M, Guo X, Wen R, Li X, Li X, Li S, Ma L (2018) Growth of high-quality covalent organic framework nanosheets at the interface of two miscible organic solvents. Nanoscale Horizons 3(2):205–212

    CAS  Google Scholar 

  93. Wen P, Zhang C, Yang Z, Dong R, Wang D, Fan M, Wang J (2017) Triazine-based covalent-organic frameworks: a novel lubricant additive with excellent tribological performances. Tribol Int 111:57–65

    CAS  Google Scholar 

  94. Li RL, Flanders NC, Evans AM, Ji W, Castano I, Chen LX, Gianneschi NC, Dichtel WR (2019) Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chem Sci 10(13):3796–3801

    CAS  Google Scholar 

  95. Miao Z, Liu G, Cui Y, Liu Z, Li J, Han F, Liu Y, Sun X, Gong X, Zhai Y et al (2019) A novel strategy for the construction of covalent organic frameworks from nonporous covalent organic polymers. Angew Chem Int Ed Engl 58(15):4906–4910

    CAS  Google Scholar 

  96. Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N et al (2017) Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J Am Chem Soc 139(25):8698–8704

    CAS  Google Scholar 

  97. Liu Y, Ma Y, Yang J, Diercks CS, Tamura N, Jin F, Yaghi OM (2018) Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J Am Chem Soc 140(47):16015–16019

    CAS  Google Scholar 

  98. Krause S, Bon V, Senkovska I, Stoeck U, Wallacher D, Toebbens DM, Zander S, Pillai RS, Maurin G, Coudert F-X et al (2016) A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532(7599):348–352

    CAS  Google Scholar 

  99. Zhou Z, Zhong W, Cui K, Zhuang Z, Li L, Li L, Bi J, Yu Y (2018) A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chem Commun 54(71):9977–9980

    CAS  Google Scholar 

  100. Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc 138(9):3031–3037

    CAS  Google Scholar 

  101. Mullangi D, Dhavale V, Shalini S, Nandi S, Collins S, Woo T, Kurungot S, Vaidhyanathan R (2016) Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp(3) N-Rich Flexible COF. Adv Energy Mater 6(1600110):1–8

    Google Scholar 

  102. Jiang Q, Li Y, Zhao X, Xiong P, Yu X, Xu Y, Chen L (2018) Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li–S batteries. J Mater Chem A 6(37):17977–17981

    CAS  Google Scholar 

  103. Wang R-Q, Wei X-B, Feng Y-Q (2018) Beta-Cyclodextrin covalent organic framework for selective molecular adsorption. Chem A Eur J 24(43):10979–10983

    CAS  Google Scholar 

  104. Wang RQ, Wei XB, Feng YQ (2018) Beta-Cyclodextrin covalent organic framework for selective molecular adsorption. Chemistry 24(43):10979–10983

    CAS  Google Scholar 

  105. Gole B, Stepanenko V, Rager S, Grune M, Medina DD, Bein T, Wurthner F, Beuerle F (2018) Microtubular self-assembly of covalent organic frameworks. Angew Chem Int Ed Engl 57(3):846–850

    CAS  Google Scholar 

  106. Rozhko E, Bavykina A, Osadchii D, Makkee M, Gascon J (2017) Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. J Catal 345:270–280

    CAS  Google Scholar 

  107. He H, Chen X, Zou W, Li R (2018) Transition metal decorated covalent triazine-based frameworks as a capacity hydrogen storage medium. Int J Hydrogen Energy 43(5):2823–2830

    CAS  Google Scholar 

  108. Das P, Mandal SK (2018) A dual-functionalized, luminescent and highly crystalline covalent organic framework: molecular decoding strategies for VOCs and ultrafast TNP sensing. J Mater Chem A 6(33):16246–16256

    CAS  Google Scholar 

  109. Li W, Yang CX, Yan XP (2017) A versatile covalent organic framework-based platform for sensing biomolecules. Chem Commun 53(83):11469–11471

    CAS  Google Scholar 

  110. Wang S, Ma L, Wang Q, Shao P, Ma D, Yuan S, Lei P, Li P, Feng X, Wang B (2018) Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. J Mater Chem C 6(20):5369–5374

    CAS  Google Scholar 

  111. Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H (2017) Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries. ACS Appl Mater Interfaces 9(43):37731–37738

    CAS  Google Scholar 

  112. Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng HM, Li F (2017) A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv Mater 29(1603835):1–6

    Google Scholar 

  113. Fu Y, Wang Z, Li S, He X, Pan C, Yan J, Yu G (2018) Functionalized covalent triazine frameworks for effective CO2 and SO2 removal. ACS Appl Mater Interfaces 10(42):36002–36009

    CAS  Google Scholar 

  114. Jiao L, Hu Y, Ju H, Wang C, Gao M-R, Yang Q, Zhu J, Yu S-H, Jiang H-L (2017) From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. J Mater Chem A 5(44):23170–23178

    CAS  Google Scholar 

  115. Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L (2017) Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116:686–694

    CAS  Google Scholar 

  116. Jiao L, Zhou YX, Jiang HL (2016) Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Sci 7(3):1690–1695

    CAS  Google Scholar 

  117. Hou Y, Wen Z, Cui S, Ci S, Mao S, Chen J (2015) An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Funct Mater 25(6):872–882

    CAS  Google Scholar 

  118. Kim DJ, Yoon JW, Lee CS, Bae Y-S, Kim JH (2018) Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor. Appl Surf Sci 439:833–838

    CAS  Google Scholar 

  119. Ji E, Asad M, Xu Q, Dalapat S, Matthew A (2017) Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science 357:673–676

    Google Scholar 

  120. Chen GJ, Li XB, Zhao CC, Ma HC, Kan JL, Xin YB, Chen CX, Dong YB (2018) Ru Nanoparticles-loaded covalent organic framework for solvent-free one-pot tandem reactions in air. Inorg Chem 57(5):2678–2685

    CAS  Google Scholar 

  121. Mu X, Pan Y, Ma C, Zhan J, Song L (2018) Novel Co 3 O 4 /covalent organic frameworks nanohybrids for conferring enhanced flame retardancy, smoke and CO suppression and thermal stability to polypropylene. Mater Chem Phys 215:20–30

    CAS  Google Scholar 

  122. Wang J, Li J, Gao M, Zhang X (2017) Self-assembling covalent organic framework functionalized magnetic graphene hydrophilic biocomposites as an ultrasensitive matrix for N-linked glycopeptide recognition. Nanoscale 9(30):10750–10756

    CAS  Google Scholar 

  123. Kandambeth S, Venkatesh V, Shinde DB, Kumari S, Halder A, Verma S, Banerjee R (2015) Self-templated chemically stable hollow spherical covalent organic framework. Nat Commun 6(6786):1–10

    Google Scholar 

  124. Jin Y, Hu Y, Zhang W (2017) Tessellated multiporous two-dimensional covalent organic frameworks. Nat Rev Chem 1(7):1–11

    Google Scholar 

  125. Cheetham AK, Kieslich G, Yeung HH (2018) Thermodynamic and kinetic effects in the crystallization of metal-organic frameworks. Acc Chem Res 51(3):659–667

    CAS  Google Scholar 

  126. Wang T, Xue R, Chen H, Shi P, Lei X, Wei Y, Guo H, Yang W (2017) Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe3+. New J Chem 41(23):14272–14278

    CAS  Google Scholar 

  127. Chen L, He Y, Lei Z, Gao C, Xie Q, Tong P, Lin Z (2018) Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample. Talanta 181:296–304

    CAS  Google Scholar 

  128. Luo Y, Liu J, Liu Y, Lyu Y (2017) Porphyrin-based covalent triazine frameworks: Porosity, adsorption performance, and drug delivery. J Polym Sci Part A Polym Chem 55(16):2594–2600

    CAS  Google Scholar 

  129. Lu S, Hu Y, Wan S, McCaffrey R, Jin Y, Gu H, Zhang W (2017) Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J Am Chem Soc 139(47):17082–17088

    CAS  Google Scholar 

  130. Yuan YC, Sun B, Cao AM, Wang D, Wan LJ (2018) Heterogeneous nucleation and growth of highly crystalline imine-linked covalent organic frameworks. Chem Commun 54(47):5976–5979

    CAS  Google Scholar 

  131. Li H, Chavez AD, Li H, Li H, Dichtel WR, Bredas JL (2017) Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. J Am Chem Soc 139(45):16310–16318

    CAS  Google Scholar 

  132. Wu X, Han X, Liu Y, Liu Y, Cui Y (2018) Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J Am Chem Soc 140(47):16124–16133

    CAS  Google Scholar 

  133. Kim S, Lim H, Lee J, Choi HC (2018) Synthesis of a scalable two-dimensional covalent organic framework by the photon-assisted imine condensation reaction on the water surface. Langmuir 34(30):8731–8738

    CAS  Google Scholar 

  134. Hao Q, Zhao C, Sun B, Lu C, Liu J, Liu M, Wan LJ, Wang D (2018) Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J Am Chem Soc 140(38):12152–12158

    CAS  Google Scholar 

  135. Wang R, Shi X, Xiao A, Zhou W, Wang Y (2018) Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J Membr Sci 566:197–204

    CAS  Google Scholar 

  136. Shinde DB, Sheng G, Li X, Ostwal M, Emwas AH, Huang KW, Lai Z (2018) Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J Am Chem Soc 140(43):14342–14349

    CAS  Google Scholar 

  137. Auras F, Ascherl L, Hakimioun AH, Margraf JT, Hanusch FC, Reuter S, Bessinger D, Doblinger M, Hettstedt C, Karaghiosoff K et al (2016) Synchronized Offset Stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks. J Am Chem Soc 138(51):16703–16710

    CAS  Google Scholar 

  138. Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV (2018) H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett 3(2):400–409

    CAS  Google Scholar 

  139. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118(13):6337–6408

    CAS  Google Scholar 

  140. Yan Y, He T, Zhao B, Qi K, Liu H, Xia BY (2018) Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J Mater Chem A 6(33):15905–15926

    CAS  Google Scholar 

  141. Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y (2017) Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J Am Chem Soc 139(25):8693–8697

    CAS  Google Scholar 

  142. Banerjee T, Haase F, Savasci G, Gottschling K, Ochsenfeld C, Lotsch BV (2017) Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J Am Chem Soc 139(45):16228–16234

    CAS  Google Scholar 

  143. Wang D, Li X, Zheng LL, Qin LM, Li S, Ye P, Li Y, Zou JP (2018) Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale 10(41):19509–19516

    CAS  Google Scholar 

  144. Zhou G, Zheng L-L, Wang D, Xing Q-J, Li F, Ye P, Xiao X, Li Y, Zou J-P (2019) A general strategy via chemically covalent combination for constructing heterostructured catalysts with enhanced photocatalytic hydrogen evolution. Chem Commun 55(29):4150–4153

    CAS  Google Scholar 

  145. Wu D, Xu Q, Qian J, Li X, Sun Y (2019) Bimetallic covalent organic frameworks for constructing multifunctional electrocatalyst. Chemistry 25(12):3105-3111

    CAS  Google Scholar 

  146. Li F, Wang D, Xing Q-J, Zhou G, Liu S-S, Li Y, Zheng L-L, Ye P, Zou J-P (2019) Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl Catal B 243:621–628

    CAS  Google Scholar 

  147. Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z (2019) Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 123:59–68

    CAS  Google Scholar 

  148. Haase F, Banerjee T, Savasci G, Ochsenfeld C, Lotsch BV (2017) Structure-property-activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discuss 201:247–264

    CAS  Google Scholar 

  149. Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu WH, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS et al (2018) Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat Chem 10(12):1180–1189

    CAS  Google Scholar 

  150. Stegbauer L, Zech S, Savasci G, Banerjee T, Podjaski F, Schwinghammer K, Ochsenfeld C, Lotsch BV (2018) Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation. Adv Energy Mater 8(1703278):1–8

    Google Scholar 

  151. Ma W, Yu P, Ohsaka T, Mao L (2015) An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochem Commun 52:53–57

    CAS  Google Scholar 

  152. Liu W, Wang C, Zhang L, Pan H, Liu W, Chen J, Yang D, Xiang Y, Wang K, Jiang J et al (2019) Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. J Mater Chem A 7(7):3112–3119

    CAS  Google Scholar 

  153. Yu W, Gu S, Fu Y, Xiong S, Pan C, Liu Y, Yu G (2018) Carbazole-decorated covalent triazine frameworks: novel nonmetal catalysts for carbon dioxide fixation and oxygen reduction reaction. J Catal 362:1–9

    CAS  Google Scholar 

  154. Li Z, Zhi Y, Shao P, Xia H, Li G, Feng X, Chen X, Shi Z, Liu X (2019) Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Appl Catal B 245:334–342

    CAS  Google Scholar 

  155. Xie J, Shevlin SA, Ruan Q, Moniz SJA, Liu Y, Liu X, Li Y, Lau CC, Guo ZX, Tang J (2018) Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ Sci 11(6):1617–1624

    Google Scholar 

  156. Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A (2019) Macro/microporous covalent organic frameworks for efficient electrocatalysis. J Am Chem Soc 141(16):6623–6630

    CAS  Google Scholar 

  157. Sick T, Hufnagel AG, Kampmann J, Kondofersky I, Calik M, Rotter JM, Evans A, Doblinger M, Herbert S, Peters K et al (2018) Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J Am Chem Soc 140(6):2085–2092

    CAS  Google Scholar 

  158. Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Tian G, Schmidt J, Thomas A (2019) Silica-templated covalent organic framework-derived Fe–N-Doped mesoporous carbon as oxygen reduction electrocatalyst. Chem Mater 31(9):3274–3280

    CAS  Google Scholar 

  159. Xu Q, Tang Y, Zhang X, Oshima Y, Chen Q, Jiang D (2018) Template conversion of covalent organic frameworks into 2d conducting nanocarbons for catalyzing oxygen reduction reaction. Adv Mater 30(1706330):1–8

    CAS  Google Scholar 

  160. Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans I, Zhang X, Zhang J et al (2018) 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J Am Chem Soc 140(44):14614–14618

    CAS  Google Scholar 

  161. Fu Y, Zhu X, Huang L, Zhang X, Zhang F, Zhu W (2018) Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl Catal B 239:46–51

    CAS  Google Scholar 

  162. Zhi Y, Shao P, Feng X, Xia H, Zhang Y, Shi Z, Mu Y, Liu X (2018) Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. J Mater Chem A 6(2):374–382

    CAS  Google Scholar 

  163. Liu H, Chu J, Yin Z, Cai X, Zhuang L, Deng H (2018) Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4(7):1696–1709

    CAS  Google Scholar 

  164. Cheung PL, Lee SK, Kubiak CP (2019) Facile solvent-free synthesis of thin iron porphyrin COFs on carbon cloth electrodes for CO2 reduction. Chem Mater 31(6):1908–1919

    CAS  Google Scholar 

  165. Dang QQ, Liu CY, Wang XM, Zhang XM (2018) Novel covalent triazine framework for high-performance CO2 capture and alkyne carboxylation reaction. ACS Appl Mater Interfaces 10(33):27972–27978

    CAS  Google Scholar 

  166. Diercks CS, Lin S, Kornienko N, Kapustin EA, Nichols EM, Zhu C, Zhao Y, Chang CJ, Yaghi OM (2018) Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J Am Chem Soc 140(3):1116–1122

    CAS  Google Scholar 

  167. Mu ZJ, Ding X, Chen ZY, Han BH (2018) Zwitterionic covalent organic frameworks as catalysts for hierarchical reduction of CO2 with amine and hydrosilane. ACS Appl Mater Interfaces. 41350–41358. https://doi.org/10.1021/acsami.8b1467110.1021/acsami.8b14671

  168. Sheng JL, Dong H, Meng XB, Tang HL, Yao YH, Liu DQ, Bai LL, Zhang FM, Wei JZ, Sun XJ (2019) Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. Chem Cat Chem 11(9):2313–2319

    CAS  Google Scholar 

  169. Tao H, Gao Y, Talreja N, Guo F, Texter J, Yan C, Sun Z (2017) Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A 5(16):7257–7284

    CAS  Google Scholar 

  170. Chen X, Sun W, Wang Y (2020) Covalent organic frameworks for next-generation batteries. Chem Electro Chem 7(9):3905–3926

    CAS  Google Scholar 

  171. Olajire AA (2017) Recent advances in the synthesis of covalent organic frameworks for CO2 capture. J CO2 Util 17:137–161

    CAS  Google Scholar 

  172. Miner EM, Dinca M (2019) Metal and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Philos Trans A Math Phys Eng Sci 377(2149):1–18

    Google Scholar 

  173. Mao J, Iocozzia J, Huang J, Meng K, Lai Y, Lin Z (2018) Graphene aerogels for efficient energy storage and conversion. Energy Environ Sci 11(4):772–799

    CAS  Google Scholar 

  174. Das SK, Bhunia K, Mallick A, Pradhan A, Pradhan D, Bhaumik A (2018) A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous Mesoporous Mater 266:109–116

    CAS  Google Scholar 

  175. Halder A, Ghosh M, Khayum MA, Bera S, Addicoat M, Sasmal HS, Karak S, Kurungot S, Banerjee R (2018) Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J Am Chem Soc 140(35):10941–10945

    CAS  Google Scholar 

  176. El-Mahdy AFM, Hung YH, Mansoure TH, Yu HH, Chen T, Kuo SW (2019) A hollow microtubular triazine- and benzobisoxazole-based covalent organic framework presenting sponge-like shells that functions as a high-performance supercapacitor. Chem Asian J 14(9):1429–1435

    CAS  Google Scholar 

  177. Liu S, Yao L, Lu Y, Hua X, Liu J, Yang Z, Wei H, Mai Y (2019) All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors. Mater Lett 236:354–357

    CAS  Google Scholar 

  178. Khayum MA, Vijayakumar V, Karak S, Kandambeth S, Bhadra M, Suresh K, Acharambath N, Kurungot S, Banerjee R (2018) Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl Mater Interfaces 10(33):28139–28146

    Google Scholar 

  179. Han Y, Zhang Q, Hu N, Zhang X, Mai Y, Liu J, Hua X, Wei H (2017) Core-shell nanostructure of single-wall carbon nanotubes and covalent organic frameworks for supercapacitors. Chin Chem Lett 28(12):2269–2273

    CAS  Google Scholar 

  180. Kim G, Yang J, Nakashima N, Shiraki T (2017) Highly microporous nitrogen-doped carbon synthesized from azine-linked covalent organic framework and its supercapacitor function. Chemistry 23(69):17504–17510

    CAS  Google Scholar 

  181. Romero J, Rodriguez-San-Miguel D, Ribera A, Mas-Ballesté R, Otero TF, Manet I, Licio F, Abellán G, Zamora F, Coronado E (2017) Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene. J Mater Chem A 5(9):4343–4351

    CAS  Google Scholar 

  182. Kim M, Puthiaraj P, Qian Y, Kim Y, Jang S, Hwang S, Na E, Ahn W-S, Shim SE (2018) High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity. Electrochim Acta 284:98–107

    CAS  Google Scholar 

  183. Bhanja P, Bhunia K, Das SK, Pradhan D, Kimura R, Hijikata Y, Irle S, Bhaumik A (2017) A new triazine-based covalent organic framework for high-performance capacitive energy storage. Chemsuschem 10(5):921–929

    CAS  Google Scholar 

  184. Chen N, Zhang H, Li L, Chen R, Guo S (2018) Ionogel electrolytes for high-performance lithium batteries: a review. Adv Energy Mater 8(1702675):1–27

    Google Scholar 

  185. Liu T, Zhang L, Cheng B, Yu J (2019) Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater 9(1803900):1–55

    Google Scholar 

  186. Bai L, Gao Q, Zhao Y (2016) Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J Mater Chem A 4(37):14106–14110

    CAS  Google Scholar 

  187. Zhang G, Hong YL, Nishiyama Y, Bai S, Kitagawa S, Horike S (2018) Accumulation of glassy poly(ethylene oxide) anchored in covalent organic framework as solid-state Li+electrolyte. J Am Chem Soc. 1227–1234https://doi.org/10.1021/jacs.8b0767010.1021/jacs.8b07670

  188. Chen H, Tu H, Hu C, Liu Y, Dong D, Sun Y, Dai Y, Wang S, Qian H, Lin Z et al (2018) Cationic covalent organic framework nanosheets for fast li-ion conduction. J Am Chem Soc 140(3):896–899

    CAS  Google Scholar 

  189. Chandra PB, Kanti DS, Arnab G, Raj AK, Parikshit M, Matthew A, Sagar M, Asim B, Santanu B, Anirban P (2018) Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J Mater Chem A 6:16655–16663

    Google Scholar 

  190. Haldar S, Kaleeswaran D, Rase D, Roy K, Ogale S, Vaidhyanathan R (2020) Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horiz 5:1264-1273

    CAS  Google Scholar 

  191. Zhao X, Pachfule P, Li S, Langenhahn T, Thomas A (2019) Silica-templated covalent organic framework-derived fe-n doped mesoporous carbon as oxygen reduction electrocatalyst. Chem Mater 31:3274–3280

    CAS  Google Scholar 

  192. Peng P, Shi L, Huo F, Zhang S, Mi Chunxia, Cheng Yuanhui, Xiang Z (2019) In situ charge exfoliated soluble covalent organic framework directly used for zn-air flow battery. ACS Nano 13:878–884

    Google Scholar 

  193. SH Mishra, S Ghosh, T Singh. Progress in materials development for flexible perovskite solar cells and future prospects.1–79. ChemSusChem

  194. Li Y, Chen Q, Xu T, Xie Z, Chen L (2019) De novo design and facile synthesis of 2D covalent organic frameworks: a two-in-one strategy. J Am Chem Soc 141:13822–13828

    CAS  Google Scholar 

  195. Mohamed MG, Lee CC, El-Mahdy AFM, Luder J, Yu MH, Li Z, Zhu Z, Chueh CC, Kuo SW (2020) Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. J Mater Chem A 8:11448–11459

    CAS  Google Scholar 

  196. Je SH, Kim HJ, Kim J, Choi JW, Coskun A (2017) Perfluoroaryl-elemental sulfur SN Ar chemistry in covalent triazine frameworks with high sulfur contents for lithium-sulfur batteries. Adv Funct Mater 27(1703947):1–9

    Google Scholar 

  197. Shi QX, Pei HJ, You N, Wu J, Xiang X, Xia Q, Xie XL, Jin SB, Ye YS (2019) Large-scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. Chem Eng J 375(121977):1–13

    Google Scholar 

  198. Song X, Zhang M, Yao M, Hao C, Qiu J (2018) New insights into the anchoring mechanism of polysulfides inside nanoporous covalent organic frameworks for lithium-sulfur batteries. ACS Appl Mater Interfaces 10(50):43896–43903

    CAS  Google Scholar 

  199. Zhang X, Yao L, Liu S, Zhang Q, Mai Y, Hu N, Wei H (2018) High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks. Mater Today Energy 7:141–148

    Google Scholar 

  200. Meng Y, Lin G, Ding H, Liao H, Wang C (2018) Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium–sulfur batteries. J Mater Chem A 6(35):17186–17191

    CAS  Google Scholar 

  201. Ghazi ZA, Zhu L, Wang H, Naeem A, Khattak AM, Liang B, Khan NA, Wei Z, Li L, Tang Z (2016) Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv Energy Mater 6(1601250):1–6

    Google Scholar 

  202. Liao H, Wang H, Ding H, Meng X, Xu H, Wang B, Ai X, Wang C (2016) A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. J Mater Chem A 4(19):7416–7421

    CAS  Google Scholar 

  203. Talapaneni SN, Hwang TH, Je SH, Buyukcakir O, Choi JW, Coskun A (2016) Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries. Angew Chem Int Ed Engl 55(9):3106–3111

    CAS  Google Scholar 

  204. Xiao Z, Li L, Tang Y, Cheng Z, Pan H, Tian D, Wang R (2018) Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries. Energy Storage Mater 12:252–259

    Google Scholar 

  205. Zhang X, Wang Z, Yao L, Mai Y, Liu J, Hua X, Wei H (2018) Synthesis of core-shell covalent organic frameworks/multi-walled carbon nanotubes nanocomposite and application in lithium-sulfur batteries. Mater Lett 213:143–147

    CAS  Google Scholar 

  206. Zhou B, Hu X, Zeng G, Li S, Wen Z, Chen L (2017) Bottom-Up construction of porous organic frameworks with built-in tempo as a cathode for lithium-sulfur batteries. Chemsuschem 10(14):2955–2961

    CAS  Google Scholar 

  207. Yoo J, Cho SJ, Jung GY, Kim SH, Choi KH, Kim JH, Lee CK, Kwak SK, Lee SY (2016) COF-Net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett 16(5):3292–3300

    CAS  Google Scholar 

  208. Ni B, Li Y, Chen T, Lu T, Pan L (2019) Covalent organic frameworks converted N, B co-doped carbon spheres with excellent lithium ion storage performance at high current density. J Colloid Interface Sci 542:213–221

    CAS  Google Scholar 

  209. Chen X, Zhang H, Ci C, Sun W, Wang Y (2019) Few-Layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano 13(3):3600–3607

    CAS  Google Scholar 

  210. Yang D-H, Yao Z-Q, Wu D, Zhang Y-H, Zhou Z, Bu X-H (2016) Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J Mater Chem A 4(47):18621–18627

    CAS  Google Scholar 

  211. Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R et al (2019) High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv Mater 31(1901640):1-8

    Google Scholar 

  212. Lei Z, Yang Q, Xu Y, Guo S, Sun W, Liu H, Lv LP, Zhang Y, Wang Y (2018) Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun 9(576):1-13

    Google Scholar 

  213. Haldar S, Roy K, Nandi S, Chakraborty D, Puthusseri D, Gawli Y, Ogale S, Vaidhyanathan R (2018) High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv Energy Mater 8(1702170):1–11

    Google Scholar 

  214. Zhuang G-L, Gao Y-F, Zhou X, Tao X-Y, Luo J-M, Gao Y-J, Yan Y-L, Gao P-Y, Zhong X, Wang J-G (2017) ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem Eng J 330:1255–1264

    CAS  Google Scholar 

  215. Yang H, Zhang S, Han L, Zhang Z, Xue Z, Gao J, Li Y, Huang C, Yi Y, Liu H et al (2016) High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl Mater Interfaces 8(8):5366–5375

    CAS  Google Scholar 

  216. Feng S, Xu H, Zhang C, Chen Y, Zeng J, Jiang D, Jiang JX (2017) Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chem Commun 53(82):11334–11337

    CAS  Google Scholar 

  217. Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X et al (2017) Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc 139(12):4258–4261

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 21776066, 51739004, 51521006, 71431006), the Fundamental Research Funds for the Central Universities (531118010394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingzhong Yuan or Longbo Jiang.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yuan, X., Wang, H. et al. Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices. J Mater Sci 56, 13875–13924 (2021). https://doi.org/10.1007/s10853-021-05872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05872-8

Navigation