Skip to main content

Advertisement

Log in

Enhanced photoelectrochemical water oxidation of WO3/R-CoO and WO3/B-CoO photoanodes with a type II heterojunction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tungsten trioxide (WO3) has been conceived as a promising photoanode material for photoelectrochemical (PEC) water oxidation. Therefore, many efforts have been made to improve its PEC performances. Herein, a novel heterojunction is fabricated through combining rocksalt CoO (R-CoO) or blende CoO (B-CoO) nanosheets with WO3 nanoplates using a spin-coating method. The typical type II heterojunctions, e.g., WO3/R-CoO and WO3/B-CoO, both have exhibited higher photocurrent densities than pristine WO3 photoanode. The photocurrent densities of WO3/R-CoO, WO3/B-CoO and WO3 are 0.53 mA cm−2, 0.45 mA cm−2 and 0.31 mA cm−2 at 1.23 V vs. reversible hydrogen electrode, respectively. For the WO3/R-CoO photoanode, the surface charge separation efficiency is 50.95% and the photoconversion efficiency is 0.062%, which are both higher than the WO3 and WO3/B-CoO photoanodes. The enhanced PEC performances are due to the type II heterojunction between WO3 and R-CoO (or B-CoO), which facilitates the absorption of visible light and charge transport. The better performance of WO3/R-CoO than that of WO3/B-CoO may be due to the deeper valence band position of R-CoO. Our work demonstrates that R-CoO (or B-CoO) can couple with WO3 to form a type II heterojunction to improve the PEC water oxidation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Liu C, Luo H, Xu Y, Wang W, Liang Q, Mitsuzaki N, Chen Z (2019) Cobalt–phosphate-modified Mo: BiVO4 mesoporous photoelectrodes for enhanced photoelectrochemical water splitting. J Mater Sci 54:10670–10683. https://doi.org/10.1007/s10853-019-03658-7

    Article  CAS  Google Scholar 

  2. Yan D, Liu J, Fu X, Liu P, Luo H (2019) Low-temperature synthesis of mesoporous boron carbides as metal-free photocatalysts for enhanced CO2 reduction and generation of hydroxyl radicals. J Mater Sci 54:6151–6163. https://doi.org/10.1007/s10853-018-03284-9

    Article  CAS  Google Scholar 

  3. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  Google Scholar 

  4. Wang Q, Domen K (2019) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  6. Yan D, Fu X, Shang Z, Liu J, Luo H (2019) A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chem Eng J 361:853–861

    CAS  Google Scholar 

  7. Lee DK, Choi KS (2018) Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3:53–60

    CAS  Google Scholar 

  8. Chang H, Shang Z, Kong Q, Liu P, Liu J, Luo H (2019) α-Fe2O3 nanorods embedded with two-dimensional 0 0 1 facets exposed TiO2 flakes derived from Ti3C2TX MXene for enhanced photoelectrochemical water oxidation. Chem Eng J 370:314–321

    CAS  Google Scholar 

  9. Yan D, Liu J, Shang Z, Luo H (2017) Ti-doped α-Fe2O3 nanorods with controllable morphology by carbon layer coating for enhanced photoelectrochemical water oxidation. Dalton Trans 46:10558–10563

    CAS  Google Scholar 

  10. Han J, Liu Z, Guo K, Wang B, Zhang X, Hong T (2015) High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl Catal B Environ 163:179–188

    CAS  Google Scholar 

  11. Zhang B, Wang Z, Huang B et al (2017) Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 28:6613–6620

    Google Scholar 

  12. Liu G, Shi J, Zhang F et al (2014) A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew Chem Int Ed 53:7295–7299

    CAS  Google Scholar 

  13. Liu G, Ye S, Yan P et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9:1327–1334

    CAS  Google Scholar 

  14. Kalanur SS, Yoo IH, Eom K, Seo H (2018) Enhancement of photoelectrochemical water splitting response of WO3 by Means of Bi doping. J Catal 357:127–137

    Google Scholar 

  15. Zhang J, Chang X, Li C, Li A, Liu S, Wang T, Gong J (2018) WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation. J Mater Chem A 6:3350–3354

    CAS  Google Scholar 

  16. Ma M, Zhang K, Li P, Jung M, Jeong M, Park J (2016) Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed 128:11998–12002

    Google Scholar 

  17. Wang Y, Tian W, Chen C, Xu W, Li L (2019) Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv Funct Mater 29:1809036

    Google Scholar 

  18. Xu F, Yao Y, Bai D et al (2015) A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array. J Colloid Interf Sci 458:194–199

    CAS  Google Scholar 

  19. Zheng G, Wang J, Liu H et al (2019) Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 11:18968–18994

    CAS  Google Scholar 

  20. Wang Y, Gao C, Ge S, Yu J, Yan M (2016) Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching. Biosens Bioelectron 85:205–211

    CAS  Google Scholar 

  21. Kwong WL, Savvides N, Sorrell CC (2012) Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochim Acta 75:371–380

    CAS  Google Scholar 

  22. Liu Z, Wu J, Zhang J (2016) Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int J Hydrog Energy 41:20529–20535

    CAS  Google Scholar 

  23. Zhang T, Zhu Z, Chen H et al (2015) Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale 7:2933–2940

    CAS  Google Scholar 

  24. Xiao YH, Xu CQ, Zhang WD (2017) Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting. J Solid State Electrochem 21:3355–3364

    CAS  Google Scholar 

  25. Bai S, Yang X, Liu C, Xiang X, Luo R, He J, Chen A (2018) An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng 6:12906–12913

    CAS  Google Scholar 

  26. Su J, Guo L, Bao N, Girmes C (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933

    CAS  Google Scholar 

  27. Hou Y, Zuo F, Dagg AP, Liu J, Feng P (2014) Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater 26:5043–5049

    CAS  Google Scholar 

  28. Zhan F, Liu W, Li W, Liu J, Yang Y, Li Y, Chen Q (2016) Efficient solar water oxidation by WO3 plate arrays film decorated with CoOx electrocatalyst. Int J Hydrog Energy 41:11925–11932

    CAS  Google Scholar 

  29. Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B Environ 243:556–565

    CAS  Google Scholar 

  30. Chen J, Xiao X, Wang Y, Ye Z (2019) Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl Surf Sci 467:1000–1010

    Google Scholar 

  31. Rao PM, Cai L, Liu C et al (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105

    CAS  Google Scholar 

  32. Grigioni I, Stamplecoskie KG, Selli E, Kamat P (2015) Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J Phys Chem C 119:20792–20800

    CAS  Google Scholar 

  33. Wang Y, Tian W, Chen L, Cao F, Guo J, Li L (2017) Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 9:40235–40243

    CAS  Google Scholar 

  34. Xu J, Li X, Ju Z et al (2019) Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt (II) oxide atomic layers. Angew Chem Int Ed 131:3064–3068

    Google Scholar 

  35. Zou X, Dong Y, Ke J, Ge H, Chen D, Sun H, Cui Y (2020) Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125919

    Article  Google Scholar 

  36. Gui Y, Blackwood DJ (2015) Honey-comb structured WO3/TiO2 thin films with improved electrochromic properties. J Electronchem Soc 162:E205–E212

    CAS  Google Scholar 

  37. Tan Z, Li L, Cui C et al (2012) Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J Phys Chem C 116:18626–18632

    CAS  Google Scholar 

  38. Muhmood T, Khan MA, Xia M, Lei W, Wang F (2017) Enhanced photo-electrochemical, photo-degradation and charge separation ability of graphitic carbon nitride (g-C3N4) by self-type metal free heterojunction formation for antibiotic degradation. J Photochem Photobiol A 348:118–124

    CAS  Google Scholar 

  39. Zheng J, Pawar A, Kim C, Kim Y, Kang Y (2018) Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization. Appl Catal B Environ 233:88–98

    CAS  Google Scholar 

  40. Zhu Z, Yan Y, Li J (2015) Preparation of flower-like BiOBr–WO3–Bi2WO6 ternary hybrid with enhanced visible-light photocatalytic activity. J Alloy Compd 651:184–192

    CAS  Google Scholar 

  41. Zheng G, Wang J, Li H, Li Y, Hu P (2020) WO3/Cu2O heterojunction for the efficient photoelectrochemical property without external bias. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.118561

    Article  Google Scholar 

  42. Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L (2014) 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:17200–17207

    CAS  Google Scholar 

  43. Lee BR, Lee MG, Park H et al (2019) All-solution-processed WO3/BiVO4 core-shell nanorod arrays for highly stable photoanodes. ACS Appl Mater Interfaces 11:20004–20012

    CAS  Google Scholar 

  44. Li Y, Liu Z, Ruan M, Guo Z, Li X (2019) 1D WO3 nanorods/2D WO3−x nanoflakes homojunction structure for enhanced charge separation and transfer towards efficient photoelectrochemical performance. Chemsuschem 12:5282–5290

    CAS  Google Scholar 

  45. Wu Q, Bu Q, Li S, Lin Y, Zou X, Wang D, Xie T (2019) Enhanced interface charge transfer via nn WO3/Ti–Fe2O3 heterojunction formation for water splitting. J Alloy Compd 803:1105–1111

    CAS  Google Scholar 

  46. Corby S, Francàs L, Selim S et al (2018) Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J Am Chem Soc 140:16168–16177

    CAS  Google Scholar 

  47. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A (2017) Heterojunction photocatalysts. Adv Mater. https://doi.org/10.1002/adma.201601694

    Article  Google Scholar 

  48. Sharma MD, Mahala C, Basu M (2019) Band gap tuning to improve the photoanodic activity of ZnInxSy for photoelectrochemical water oxidation. Catal Sci Technol 9:6769–6781

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Fund of Hunan Provincial Education Department (18B065) and the Natural Science Foundation of Hunan Province (2019JJ50595).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jikai Liu or He’an Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, Q., Liu, J. et al. Enhanced photoelectrochemical water oxidation of WO3/R-CoO and WO3/B-CoO photoanodes with a type II heterojunction. J Mater Sci 56, 8079–8090 (2021). https://doi.org/10.1007/s10853-020-05754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05754-5

Navigation