Skip to main content

Advertisement

Log in

Manufacture, characterization and proton irradiation effects of \(^{12}\hbox {C}\) and \(^{13}\hbox {C}\) thick targets

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alternative sources of neutron production other than nuclear fission reactions are important priorities in medical and nuclear applications due to costs, safety and ease of operation. In this work, \(^{12}\hbox {C}\) and \(^{13}\hbox {C}\) thick targets for neutron production through \(^{12}\hbox {C(d,n)}^{13}\hbox {N}\) and \(^{13}\hbox {C(d,n)}^{14}\hbox {N}\), respectively, have been manufactured and characterized by different techniques. In order to evaluate the irradiation effects on these materials, the targets were irradiated with 150 keV proton beam. A complete characterization of these samples was performed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy. The results of these studies allowed us to establish that even though the irradiated samples present microstructural and chemical structure changes on its surface, the \(^{12}\hbox {C}\) and \(^{13}\hbox {C}\) thick targets were stable and would maintain their performance after proton irradiation at a fluence of \(2.0\times 10^{18}\hbox { ions/cm}^{2}\) and \(3.7\times 10^{18}\hbox { ions/cm}^{2}\), respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson IS, Andreani C, Carpenter JM, Festa G, Gorini G, Loong CK, Senesi R (2016) Research opportunities with compact accelerator-driven neutron sources. Phys Rep 654:1–58. https://doi.org/10.1016/j.physrep.2016.07.007

    Article  CAS  Google Scholar 

  2. Letourneau A, Marchix A, Tran H, Chauvin N, Menelle A, Ott F, Schwindling J (2017) Development of compact accelerator neutron source. EPJ Web Conf 146:03018. https://doi.org/10.1051/epjconf/201714603018

    Article  CAS  Google Scholar 

  3. Carpenter JM (2019) The development of compact neutron sources. Nat Rev Phys 1(3):177–179. https://doi.org/10.1038/s42254-019-0024-8

    Article  Google Scholar 

  4. Kreiner AJ, Bergueiro J, Cartelli D, Baldo M, Castell W, Gomez Asoia J, Padulo J, Sandín Suarez JC, Igarzabal M, Erhardt J, Mercuri D, Valda AA, Minsky DM, Debray ME, Somacal HR, Capoulat ME, Herrera MS, del Grosso MF, Gagetti L, Suarez Anzorena M, Canepa N, Real N, Gun M, Tacca H (2016) Present status of accelerator-based BNCT. Rep Pract Oncol Radiother 21(2):95–101. https://doi.org/10.1016/j.rpor.2014.11.004

    Article  Google Scholar 

  5. Cartelli D, Capoulat ME, Bergueiro J, Gagetti L, Suarez Anzorena M, del Grosso MF, Baldo M, Castell W, Padulo J, Sandín Suarez JC, Igarzabal M, Erhardt J, Mercuri D, Minsky DM, Valda AA, Debray ME, Somacal H, Canepa N, Real N, Gun M, Herrera MS, Tacca H, Kreiner AJ (2015) Present status of accelerator-based BNCT: focus on developments in Argentina. Appl Radiat Isot 106:18–21. https://doi.org/10.1016/j.apradiso.2015.07.031

    Article  CAS  Google Scholar 

  6. Kiyanagi Y, Sakurai Y, Kumada H, Tanaka H (2019) Status of accelerator-based BNCT projects worldwide. AIP Conf Proc 2160:050012. https://doi.org/10.1063/1.5127704

    Article  Google Scholar 

  7. Kato T, Hirose K, Tanaka H, Mitsumoto T, Motoyanagi T, Arai K, Harada T, Takeuchi A, Kato R, Yajima S, Takai Y (2020) Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT Research Center. Appl Radiat Isot 156:108961. https://doi.org/10.1016/j.apradiso.2019.108961

    Article  CAS  Google Scholar 

  8. Zhu X, Wang H, Lu Y, Wang Z, Zhu K, Zou Y, Guo Z (2018) 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications. Nucl Instrum Methods Phys Res A 883:57–74. https://doi.org/10.1016/j.nima.2017.11.042

    Article  CAS  Google Scholar 

  9. Moss RL (2014) Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl Radiat Isot 88:2–11. https://doi.org/10.1016/j.apradiso.2013.11.109

    Article  CAS  Google Scholar 

  10. Colonna N, Beaulieu L, Phair L, Wozniak GJ, Moretto LG, Chu WT, Ludewigt BA (1999) Measurements of low-energy (d, n) reactions for BNCT. Med Phys 26(5):793–798. https://doi.org/10.1118/1.598599

    Article  CAS  Google Scholar 

  11. Bisceglie E, Colangelo P, Colonna N, Paticchio V, Santorelli P, Variale V (2002) Production of epithermal neutron beams for BNCT. Nucl Instrum Methods Phys Res A 476(1–2):123–126. https://doi.org/10.1016/S0168-9002(01)01406-1

    Article  CAS  Google Scholar 

  12. Bortolussi S, Protti N, Ferrari M, Postuma I, Fatemi S, Prata M, Ballarini F, Carante MP, Farias R, González SJ, Marrale M, Gallo S, Bartolotta A, Iacoviello G, Nigg D, Altieri S (2018) Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia. Nucl Instrum Methods Phys Res B 414:113–120. https://doi.org/10.1016/j.nimb.2017.10.023

    Article  CAS  Google Scholar 

  13. Kasesaz Y, Bavarnegin E, Golshanian M, Khajeali A, Jarahi H, Mirvakili SM, Khalafi H (2016) BNCT project at Tehran research reactor: current and prospective plans. Prog Nucl Energy 91:107–115. https://doi.org/10.1016/j.pnucene.2016.04.010

    Article  CAS  Google Scholar 

  14. Gambarini G, Artuso E, Burian J, Klupak V, Viererbl L, Marek M, Agosteo S, Serino M, Carrara M, Borroni M, d’Errico F (2014) Solid state detectors for dosimetry in the BNCT beam of the LVR-15 research reactor. Radiat Meas 71:513–517. https://doi.org/10.1016/j.radmeas.2014.07.004

    Article  CAS  Google Scholar 

  15. Sauerwein W, Moss R, Stecher-Rasmussen F, Rassow J, Wittig A (2011) Quality management in BNCT at a nuclear research reactor. Appl Radiat Isot 69(12):1786–1789. https://doi.org/10.1016/j.apradiso.2011.03.011

    Article  CAS  Google Scholar 

  16. Capoulat ME, Kreiner AJ (2017) A \(^{13}\)C(d, n)-based epithermal neutron source for Boron neutron capture therapy. Phys Med 33:106–113. https://doi.org/10.1016/j.ejmp.2016.12.017

    Article  CAS  Google Scholar 

  17. Capoulat ME, Herrera MS, Minsky DM, González SJ, Kreiner AJ (2014) \(^{9}\)Be(d, n)\(^{10}\)B-based neutron sources for BNCT. Appl Radiat Isot 88:190–194. https://doi.org/10.1016/j.apradiso.2013.11.037

    Article  CAS  Google Scholar 

  18. Minsky DM, Kreiner AJ (2015) Near threshold \(^{7}\)Li(p, n)\(^{7}\)Be reaction as neutron source for BNCT. Appl Radiat Isot 106:68–71. https://doi.org/10.1016/j.apradiso.2015.07.038

    Article  CAS  Google Scholar 

  19. Gagetti L, Suarez Anzorena M, Bertolo AA, del Grosso MF, Kreiner AJ (2017) Proton irradiation of beryllium deposits on different candidate materials to be used as a neutron production target for accelerator-based BNCT. Nucl Instrum Methods Phys Res A 874:28–34. https://doi.org/10.1016/j.nima.2017.08.026

    Article  CAS  Google Scholar 

  20. Taylor TP, Ding M, Ehler DS, Foreman TM, Kaszuba JP, Sauer NN (2003) Beryllium in the environment: a review. J Environ Sci Health A 38(2):439–469. https://doi.org/10.1081/ESE-120016906

    Article  CAS  Google Scholar 

  21. Burlon AA, Kreiner AJ, White SM, Blackburn BW, Gierga DP, Yanch JC (2001) In-phantom dosimetry for the \(^{13}\)C(d, n)\(^{14}\)N reaction as a source for accelerator-based BNCT. Med Phys 28:796–803. https://doi.org/10.1118/1.1368879

    Article  CAS  Google Scholar 

  22. Zhmurikov EI, Savchenko IV, Stankus SV, Yatsuk OS, Tecchio LB (2012) Measurements of the thermophysical properties of graphite composites for a neutron target converter. Nucl Instrum Methods Phys Res A 674:79–84. https://doi.org/10.1016/j.nima.2012.01.015

    Article  CAS  Google Scholar 

  23. Alyakrinskiy O, Avilov M, Bolkhovityanov D, Esposito J, Fadeev S, Gubin K, Kandiev Y, Korchagin A, Kot N, Lavrukhin A, Lebedev N, Logatchev P, Martyshkin P, Morozov S, Plokhoi V, Samarin S, Shiyankov S, Starostenko A, Svyatov I, Tecchio LB (2006) High power neutron converter for low energy proton/deuteron beams. Nucl Instrum Methods Phys Res A 557(2):403–413. https://doi.org/10.1016/j.nima.2005.10.127

    Article  CAS  Google Scholar 

  24. Koroteev VO, Münchgesang W, Shubin YV, Palyanov YN, Plyusnin PE, Smirnov DA, Kovalenko KA, Bobnar M, Gumeniuk R, Brendler E, Meyer DC, Bulusheva LG, Okotrub AV, Vyalikh A (2017) Multiscale characterization of \(^{13}\)C-enriched fine-grained graphitic materials for chemical and electrochemical applications. Carbon 124:161–169. https://doi.org/10.1016/j.carbon.2017.08.038

    Article  CAS  Google Scholar 

  25. Fedoseeva YV, Okotrub AV, Koroteev VO, Borzdov YM, Palyanov YN, Shubin YV, Maksimovskiy EA, Makarova AA, Münchgesang W, Bulusheva LG, Vyalikh A (2019) Graphitization of \(^{13}\)C enriched fine-grained graphitic material under high-pressure annealing. Carbon 141:323–330. https://doi.org/10.1016/j.carbon.2018.09.065

    Article  CAS  Google Scholar 

  26. Romanenko AI, Anikeeva OB, Gorbachev RV, Zhmurikov EI, Gubbin KV, Logachev PV, Avilov MS, Tsybulya SV, Kryukova GN, Burgina EB, Tecchio L (2005) A new, \(^{13}\)C-based material for neutron targets. Inorg Mater 41:451–459. https://doi.org/10.1007/s10789-005-0151-8

    Article  CAS  Google Scholar 

  27. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM - The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res B 268(11):1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  28. Jones AN, Hall GN, Joyce M, Hodgkins A, Wen K, Marrow TJ, Marsden BJ (2008) Microstructural characterisation of nuclear grade graphite. J Nucl Mater 381(1):152–157. https://doi.org/10.1016/j.jnucmat.2008.07.038

    Article  CAS  Google Scholar 

  29. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8):1686–1695. https://doi.org/10.1016/j.carbon.2007.03.038

    Article  CAS  Google Scholar 

  30. Maire J, Méring J (1970) Graphitization of soft carbons. Chem Phys Carbon 6:125–190

    CAS  Google Scholar 

  31. Nakamizo M, Kammereck R, Walker PL (1974) Laser raman studies on carbons. Carbon 12(3):259–267. https://doi.org/10.1016/0008-6223(74)90068-2

    Article  CAS  Google Scholar 

  32. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565. https://doi.org/10.1016/0008-6223(95)00117-V

    Article  CAS  Google Scholar 

  33. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  34. Rodriguez-Nieva JF, Saito R, Costa SD, Dresselhaus MS (2012) Effect of \(^{13}\)C isotope doping on the optical phonon modes in graphene: localization and Raman spectroscopy. Phys Rev B 85(24):245406. https://doi.org/10.1103/PhysRevB.85.245406

    Article  CAS  Google Scholar 

  35. Koltai J, Mezei G, Zólyomi V, Kürti J, Kuzmany H, Pichler T, Simon F (2016) Controlled isotope arrangement in \(^{13}\)C enriched carbon nanotubes. J Phys Chem C 120(51):29520–29524. https://doi.org/10.1021/acs.jpcc.6b11367

    Article  CAS  Google Scholar 

  36. Zou L, Huang B, Huang Y, Huang Q, Wang C (2003) An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites. Mater Chem Phys 82(3):654–662. https://doi.org/10.1016/S0254-0584(03)00332-8

    Article  CAS  Google Scholar 

  37. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  38. Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M (1999) Origin of dispersive effects of the Raman D band in carbon materials. Phys Rev B 59(10):R6585–R6588. https://doi.org/10.1103/PhysRevB.59.R6585

    Article  CAS  Google Scholar 

  39. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Sol State Commun 143(1):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  40. Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a ”defect” peak beside the graphitic asymmetric peak. Carbon 42(8):1713–1721. https://doi.org/10.1016/j.carbon.2004.03.005

    Article  CAS  Google Scholar 

  41. Mathew S, Joseph B, Sekhar BR, Dev BN (2008) X-ray photoelectron and Raman spectroscopic studies of MeV proton irradiated graphite. Nucl Instrum Methods Phys Res B 266(14):3241–3246. https://doi.org/10.1016/j.nimb.2008.03.233

    Article  CAS  Google Scholar 

  42. Lee KW, Lee CE (2009) Structural modification in proton-irradiated highly-oriented pyrolytic graphite. J Korean Phys Soc 54(6):2468–2471. https://doi.org/10.3938/jkps.54.2468

    Article  CAS  Google Scholar 

  43. Yang SJ, Choe JM, Jin YG, Lim ST, Lee K, Kim YS, Choi S, Park SJ, Hwang YS, Kim GH, Park CR (2012) Influence of H\(^{+}\) ion irradiation on the surface and microstructural changes of a nuclear graphite. Fusion Eng Des 87(4):344–351. https://doi.org/10.1016/j.fusengdes.2012.02.065

    Article  CAS  Google Scholar 

  44. Jackson ST, Nuzzo RG (1995) Determining hybridization differences for amorphous carbon from the XPS C 1s envelope. Appl Surf Sci 90(2):195–203. https://doi.org/10.1016/0169-4332(95)00079-8

    Article  CAS  Google Scholar 

  45. Mezzi A, Kaciulis S (2010) Surface investigation of carbon films: from diamond to graphite. Surf Interface Anal 42(6–7):1082–1084. https://doi.org/10.1002/sia.3348

    Article  CAS  Google Scholar 

  46. Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N (2018) C sp\(^{2}\)/sp\(^{3}\) hybridisations in carbon nanomaterials - XPS and (X) AES study. Appl Surf Sci 452:223–231. https://doi.org/10.1016/j.apsusc.2018.04.269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the responsible staff of the TANDAR for performing the irradiations. Dr. Diego Lamas and Dra. Ana Larralde from the Applied Crystallography Laboratory of the San Martín National University are acknowledged for their helpful collaboration provided during XRD measurements. The technical staff of the SEM and Dra. María E. Reinoso for her help in characterizing the Raman spectroscopy measurements. Fruitful comments of G. Bozzolo are gratefully acknowledged. This work was supported by the National Atomic Energy Commission (CNEA) and the National Scientific and Technical Research Council of Argentina (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma A. Bertolo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolo, A.A., Cánneva, A., Donadelli, J.A. et al. Manufacture, characterization and proton irradiation effects of \(^{12}\hbox {C}\) and \(^{13}\hbox {C}\) thick targets. J Mater Sci 56, 6997–7007 (2021). https://doi.org/10.1007/s10853-020-05728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05728-7

Navigation