Skip to main content
Log in

Direct oxidative esterification of alcohols catalyzed by a nitrogen-doped carbon black-supported PdBi bimetallic catalyst under ambient conditions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A highly efficient nitrogen-doped carbon black (NCB)-supported PdBi alloy nanocatalyst has been fabricated via a facile coreduction wet chemical approach. The optimal PdBi/NCB shows outstanding catalytic performance with broad substrate scope, good functional group tolerance towards direct oxidative esterification of alcohols under mild conditions in a heterogeneous catalytic system with air as the sole oxidant. A variety of benzylic and allylic alcohols were smoothly reacted with methanol and even with long-chain aliphatic alcohols, providing desired esters in good to excellent yields. Moreover, the as-prepared catalyst is easily recycled and can be reused at least five times without a significant loss of catalytic activity. Superior catalytic activity is mainly attributable to the unique structure of the catalyst, including synergetic electronic effect between Pd and Bi, as well as modulated surface character by acidification and N doping for better active components’ anchoring and dispersion, as well as reactants’ adsorption. This study provides a facial, practical, eco-friendly and efficient catalytic system for oxidative esterification of alcohols and shows promising prospect in industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Larock RC (1999) Comprenhensive organic transformations: a guide to functional group preparations. Wiley, Hoboken

    Google Scholar 

  2. Otera J, Nishikido J (2009) Esterification: methods, reactions, and applications. Wiley, Hoboken

    Book  Google Scholar 

  3. Tang S, Yuan J, Liu C, Lei A (2014) Direct oxidative esterification of alcohols. Dalton Trans 43(36):13460–13470. https://doi.org/10.1039/c4dt01133c

    Article  CAS  Google Scholar 

  4. Otera J (1993) Transesterification. Chem Rev 93(4):1449–1470. https://doi.org/10.1021/cr00020a004

    Article  CAS  Google Scholar 

  5. Chen CT, Munot YS (2005) Direct atom-efficient esterification between carboxylic acids and alcohols catalyzed by amphoteric, water-tolerant TiO(acac)2. J Org Chem 70(21):8625–8627. https://doi.org/10.1021/jo051337s

    Article  CAS  Google Scholar 

  6. Ekoue-Kovi K, Wolf C (2008) One-pot oxidative esterification and amidation of aldehydes. Chem Eur J 14(21):6302–6315. https://doi.org/10.1002/chem.200800353

    Article  Google Scholar 

  7. Travis BR, Sivakumar M, Hollist GO, Borhan B (2003) Facile oxidation of aldehydes to acids and esters with Oxone. Org Lett 5(7):1031–1034. https://doi.org/10.1021/ol0340078

    Article  CAS  Google Scholar 

  8. Hackbusch S, Franz AH (2016) Oxidative esterification of primary alcohols with TEMPO/CaCl2/Oxone under hydrous conditions. Tetrahedron Lett 57(26):2873–2876. https://doi.org/10.1016/j.tetlet.2016.05.066

    Article  CAS  Google Scholar 

  9. Mcdonald C, Holcomb H, Kennedy K, Kirkpatrick E, Leathers T, Vanemon P (1989) N-Iodosuccinimide-Mediated conversion of Aldehydes to Methyl-Esters. J Org Chem 54(5):1213–1215

    Article  CAS  Google Scholar 

  10. Samanta S, Pappula V, Dinda M, Adimurthy S (2014) Transition metal-free oxidative esterification of benzylic alcohols in aqueous medium. Org Biomol Chem 12(46):9453–9456. https://doi.org/10.1039/c4ob01524j

    Article  CAS  Google Scholar 

  11. Gopinath R, Patel BK (2000) A catalytic oxidative esterification of aldehydes using V2O5–H2O2. Org Lett 2(5):577–579. https://doi.org/10.1021/ol990383

    Article  CAS  Google Scholar 

  12. Zhu Y, Yan H, Lu L, Liu D, Ron G, Mao J (2013) Copper-catalyzed methyl esterification reactions via C-C bond cleavage. J Org Chem 78(19):9898–9905. https://doi.org/10.1021/jo4016387

    Article  CAS  Google Scholar 

  13. Guggilapu SD, Prajapti SK, Babu BN (2015) An efficient one-pot oxidative esterification of aldehydes to carboxylic esters using B(C6F5)3–TBHP. Tetrahedron Lett 56(7):889–892. https://doi.org/10.1016/j.tetlet.2015.01.033

    Article  CAS  Google Scholar 

  14. Gaspa S, Porcheddu A, De Luca L (2015) Metal-free direct oxidation of aldehydes to esters using TCCA. Org Lett 17(15):3666–3669. https://doi.org/10.1021/acs.orglett.5b01579

    Article  CAS  Google Scholar 

  15. Guo Y-F, Mahmood S, Xu B-H, Yao X-Q, He H-Y, Zhang S-J (2017) Oxidation of aromatic aldehydes to esters: a sulfate radical redox system. J Org Chem 82(3):1591–1599. https://doi.org/10.1021/acs.joc.6b02775

    Article  CAS  Google Scholar 

  16. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105(6):2329–2363. https://doi.org/10.1021/cr050523v

    Article  CAS  Google Scholar 

  17. Shi Z, Zhang C, Tang C, Jiao N (2012) Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem Soc Rev 41(8):3381–3430. https://doi.org/10.1039/c2cs15224j

    Article  CAS  Google Scholar 

  18. Hu Y, Chen L, Li B (2016) Iron nitrate/TEMPO-catalyzed aerobic oxidative synthesis of quinazolinones from alcohols and 2-aminobenzamides with air as the oxidant. RSC Adv 6(69):65196–65204. https://doi.org/10.1039/c6ra12164k

    Article  CAS  Google Scholar 

  19. Hu Y, Chen L, Li B (2018) Practical CuCl/DABCO/4-HO-TEMPO-catalyzed oxidative synthesis of nitriles from alcohols with air as oxidant. Chin Chem Lett 29(3):464–466. https://doi.org/10.1016/j.cclet.2017.10.036

    Article  CAS  Google Scholar 

  20. Hu Y, Li S, Li H, Li Y, Li J, Duanmu C, Li B (2019) Copper-catalyzed tandem oxidative synthesis of quinazolinones from 2-aminobenzonitriles and benzyl alcohols. Org Chem Front 6(15):2744–2748. https://doi.org/10.1039/c9qo00657e

    Article  CAS  Google Scholar 

  21. Hu Y, Chen L, Li B (2016) NHPI/ tert -butyl nitrite: a highly efficient metal-free catalytic system for aerobic oxidation of alcohols to carbonyl compounds using molecular oxygen as the terminal oxidant. Catal Commun 83:82–87. https://doi.org/10.1016/j.catcom.2016.05.017

    Article  CAS  Google Scholar 

  22. Hu Y, Chen L, Li B (2018) Fe(NO 3) 3 /2,3-dichloro-5,6-dicyano-1,4-benzo quinone (DDQ): an efficient catalyst system for selective oxidation of alcohols under aerobic conditions. Catal Commun 103:42–46. https://doi.org/10.1016/j.catcom.2017.09.019

    Article  CAS  Google Scholar 

  23. Ryland BL, Stahl SS (2014) Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew Chem Int Ed 53(34):8824–8838. https://doi.org/10.1002/anie.201403110

    Article  CAS  Google Scholar 

  24. Gowrisankar S, Neumann H, Beller M (2011) General and selective palladium-catalyzed oxidative esterification of alcohols. Angew Chem Int Ed 50(22):5139–5143. https://doi.org/10.1002/anie.201008035

    Article  CAS  Google Scholar 

  25. Cheng JJ, Zhu MJ, Wang C, Li JJ, Jiang X, Wei YW, Tang WJ, Xue D, Xiao JL (2016) Chemoselective dehydrogenative esterification of aldehydes and alcohols with a dimeric rhodium(II) catalyst. Chem Sci 7(7):4428–4434. https://doi.org/10.1039/c6sc00145a

    Article  CAS  Google Scholar 

  26. Yamamoto N, Obora Y, Ishii Y (2011) Iridium-catalyzed oxidative methyl esterification of primary alcohols and diols with methanol. J Org Chem 76(8):2937–2941. https://doi.org/10.1021/jo2003264

    Article  CAS  Google Scholar 

  27. Wang L, Li J, Dai W, Lv Y, Zhang Y, Gao S (2014) Facile and efficient gold-catalyzed aerobic oxidative esterification of activated alcohols. Green Chem 16(4):2164–2173. https://doi.org/10.1039/c3gc42075b

    Article  CAS  Google Scholar 

  28. Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure. ACS Catal 3(8):1845–1849. https://doi.org/10.1021/cs4004084

    Article  CAS  Google Scholar 

  29. Sun K-k, Chen S-j, Li Z-l, Lu G-p, Cai C (2019) Synthesis of a ZIF-derived hollow yolk–shell Co@CN catalyst for the oxidative esterification of 5-hydroxymethylfurfural. Green Chem 21(7):1602–1608. https://doi.org/10.1039/c8gc03868f

    Article  CAS  Google Scholar 

  30. Liu H, Chen G, Jiang H, Li Y, Luque R (2012) From alkyl aromatics to aromatic esters: efficient and selective C-H activation promoted by a bimetallic heterogeneous catalyst. Chemsuschem 5(10):1892–1896. https://doi.org/10.1002/cssc.201200611

    Article  CAS  Google Scholar 

  31. Das UK, Ben-David Y, Leitus G, Diskin-Posner Y, Milstein D (2018) Dehydrogenative cross-coupling of primary alcohols to form cross-esters catalyzed by a manganese pincer complex. ACS Catal 9(1):479–484. https://doi.org/10.1021/acscatal.8b04585

    Article  CAS  Google Scholar 

  32. Biajoli AFP, Peringer F, Monteiro AL (2017) Pd(OAc)2/dppp, an efficient catalytic system for the oxidative esterification of benzaldehyde using organic halides as oxidants. Catal Commun 89:48–51. https://doi.org/10.1016/j.catcom.2016.10.015

    Article  CAS  Google Scholar 

  33. Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS (2017) Activating cobalt nanoparticles via the Mott-Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J Am Chem Soc 139(2):811–818. https://doi.org/10.1021/jacs.6b10710

    Article  CAS  Google Scholar 

  34. Zhu Q, Wang F, Zhang F, Dong Z (2019) Renewable chitosan-derived cobalt@N-doped porous carbon for efficient aerobic esterification of alcohols under air. Nanoscale 11(38):17736–17745. https://doi.org/10.1039/c9nr04867g

    Article  CAS  Google Scholar 

  35. Mannel DS, Ahmed MS, Root TW, Stahl SS (2017) Discovery of multicomponent heterogeneous catalysts via admixture screening: PdBiTe catalysts for aerobic oxidative esterification of primary alcohols. J Am Chem Soc 139(4):1690–1698. https://doi.org/10.1021/jacs.6b12722

    Article  CAS  Google Scholar 

  36. Li F, Li X-L, Li C, Shi J, Fu Y (2018) Aerobic oxidative esterification of 5-hydroxymethylfurfural to dimethyl furan-2,5-dicarboxylate by using homogeneous and heterogeneous PdCoBi/C catalysts under atmospheric oxygen. Green Chem 20(13):3050–3058. https://doi.org/10.1039/c8gc01393d

    Article  CAS  Google Scholar 

  37. Caporaso M, Cravotto G, Georgakopoulos S, Heropoulos G, Martina K, Tagliapietra S (2014) Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol. Beilstein J Org Chem 10:1454–1461. https://doi.org/10.3762/bjoc.10.149

    Article  CAS  Google Scholar 

  38. Moromi SK, Siddiki SMAH, Ali MA, Kon K, Shimizu K-i (2014) Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts. Catal Sci Technol 4(10):3631–3635. https://doi.org/10.1039/c4cy00979g

    Article  CAS  Google Scholar 

  39. Oliveira RL, Kiyohara PK, Rossi LM (2009) Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem 11(9):1366–1370. https://doi.org/10.1039/b902499a

    Article  CAS  Google Scholar 

  40. Xia J, Fu Y, He G, Sun X, Wang X (2018) Cost-effective nitrogen-doped carbon black supported PdCu alloy nanocatalyst for green Suzuki-Miyaura reactions under mild conditions. Mater Chem Phys 209:86–94. https://doi.org/10.1016/j.matchemphys.2018.01.066

    Article  CAS  Google Scholar 

  41. Xia J, Zhang L, Fu Y, He G, Sun X, Wang X (2017) Nitrogen-doped carbon black supported NiCo2S4 catalyst for hydrogenation of nitrophenols under mild conditions. J Mater Sci 53(6):4467–4481. https://doi.org/10.1007/s10853-017-1852-5

    Article  CAS  Google Scholar 

  42. Liang W, Chen J, Liu Y, Chen S (2014) Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal 4(11):4170–4177. https://doi.org/10.1021/cs501170a

    Article  CAS  Google Scholar 

  43. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447. https://doi.org/10.1126/science.1200832

    Article  CAS  Google Scholar 

  44. Neto AO, Tusi MM, de Oliveira Polanco NS, da Silva SG, Coelho dos Santos M, Spinacé EV (2011) PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Int J Hydrogen Energy 36(17):10522–10526. https://doi.org/10.1016/j.ijhydene.2011.05.154

    Article  CAS  Google Scholar 

  45. Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Du Y, Yang P, Jiang S, Song S (2017) N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl Surf Sci 416:191–199. https://doi.org/10.1016/j.apsusc.2017.04.160

    Article  CAS  Google Scholar 

  46. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3(10):1437. https://doi.org/10.1039/c003710a

    Article  CAS  Google Scholar 

  47. Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1(4):999–1013. https://doi.org/10.1039/c2ta00028h

    Article  CAS  Google Scholar 

  48. Powell AB, Stahl SS (2013) Aerobic oxidation of diverse primary alcohols to methyl esters with a readily accessible heterogeneous Pd/Bi/Te catalyst. Org Lett 15(19):5072–5075. https://doi.org/10.1021/ol402428e

    Article  CAS  Google Scholar 

  49. Xia J, Shao A, Tang S, Gao X, Gao M, Lei A (2015) Palladium-catalysed oxidative cross-esterification between two alcohols. Org Biomol Chem 13(22):6154–6157. https://doi.org/10.1039/c5ob00677e

    Article  CAS  Google Scholar 

  50. Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A (2011) Palladium-catalyzed aerobic oxidative direct esterification of alcohols. Angew Chem Int Ed 50(22):5144–5148. https://doi.org/10.1002/anie.201008073

    Article  CAS  Google Scholar 

  51. Hu Y, Li B (2017) Efficient and selective palladium-catalyzed direct oxidative esterification of benzylic alcohols under aerobic conditions. Tetrahedron 73(52):7301–7307. https://doi.org/10.1016/j.tet.2017.11.025

    Article  CAS  Google Scholar 

  52. Verma S, Verma D, Sinha AK, Jain SL (2015) Palladium complex immobilized on graphene oxide-magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl Catal A 489:17–23. https://doi.org/10.1016/j.apcata.2014.10.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22001089) and the Natural Science Foundation of Jiangsu Province (No. BK20191046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongke Hu, Bindong Li or Xin Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Xia, J., Li, J. et al. Direct oxidative esterification of alcohols catalyzed by a nitrogen-doped carbon black-supported PdBi bimetallic catalyst under ambient conditions. J Mater Sci 56, 7308–7320 (2021). https://doi.org/10.1007/s10853-020-05726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05726-9

Navigation