Skip to main content
Log in

An effective strategy to enhance the flame retardancy and mechanical properties of epoxy resin by using hyperbranched flame retardant

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hyperbranched flame retardant containing P/N/Si/B and rigid–flexible structure (PTDOB) was synthesized and used to prepare high-performance epoxy resin with simultaneous improvement in both fire-safety and mechanical properties. The optimal flame-retardant epoxy thermosets show a self-extinguishing behavior, along with a 47.1% decrease in peak heat release rate, 17.3% decrease in total smoke production compared with neat epoxy resin. More importantly, the obtained flame-retardant epoxy thermosets exhibit superior mechanical properties with 55.4% and 37.5% increase in impact strength and flexural strength, respectively, indicating the incorporation of PTDOB has a good effect on flame retardancy, as well as on mechanical properties simultaneously. Flame retardancy mechanisms of both condensed-phase retardance with a barrier char and gas-phase retardance with incombustible gases provided from the hyperbranching architecture of PTDOB have been well demonstrated. The study guarantees PTDOB to be a promising additive for the development of high-performance epoxy resin with attractive potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Wang CF, Zhao M, Li J, Yu JL, Sun SF, Ge SS, Guo XK, Xie F, Jiang B, Wujcik EK, Huang YD, Wang N, Guo ZH (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271

    Article  CAS  Google Scholar 

  2. Gu HB, Guo J, Wei HG, Guo SM, Liu JR, Huang YD, Khan MA, Wang XF, Young DP, Wei SY, Guo ZH (2015) Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids. Adv Mater 27:6277–6282

    Article  CAS  Google Scholar 

  3. He YX, Yang S, Liu H, Shao Q, Chen QY, Lu C, Jiang YL, Liu CT, Guo ZH (2018) Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties. J Colloid Interface Sci 517:40–51

    Article  CAS  Google Scholar 

  4. Fischer J, Bradler PR, Schmidtbauer D, Lang RW, Wan-Wendner R (2019) Long-term creep behavior of resin-based polymers in the construction industry. Mater Today Commun 18:60–65

    Article  CAS  Google Scholar 

  5. Qiu SL, Xing WY, Feng XM, Yu B, Mu XW, Yuen RKK, Hu Y (2017) Self-standing cuprous oxide nanoparticles on silica@polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem Eng J 309:802–814

    Article  CAS  Google Scholar 

  6. Zhang SD, Liu F, Peng HQ, Peng XF, Jiang SH, Wang JS (2015) Preparation of novel C-6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res 54:11944–11952

    Article  CAS  Google Scholar 

  7. Luda MP, Balabanovich AI, Zanetti M (2010) Pyrolysis of fire retardant anhydridecured epoxy resins. J Anal Appl Pyrol 88:39–52

    Article  CAS  Google Scholar 

  8. Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, Mai Y-W (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151

    Article  CAS  Google Scholar 

  9. Jian RK, Ai YF, Xia L, Zhao LJ, Zhao HB (2019) Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J Hazard Mater 371:529–539

    Article  CAS  Google Scholar 

  10. Matykiewicz D, Przybyszewski B, Stanik R, Czulak A (2017) Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process. Compos B Eng 108:224–231

    Article  CAS  Google Scholar 

  11. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting—How modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Ed 57:10450–10467

    Article  CAS  Google Scholar 

  12. Xu YJ, Chen L, Rao WH, Qi M, Guo DM, Liao W, Wang YZ (2018) Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chem Eng J 347:223–232

    Article  CAS  Google Scholar 

  13. Sun ZZ, Hou YB, Hu Y, Hu WZ (2018) Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater Chem Phys 214:154–164

    Article  CAS  Google Scholar 

  14. Wang XF, Zhan J, Xing WY, Wang X, Song L, Qian XD, Yu B, Hu Y (2013) Flame retardancy and thermal properties of novel UV-curable epoxy acrylate coatings modified by a silicon-bearing hyperbranched polyphosphonate acrylate. Ind Eng Chem Res 52:5548–5555

    Article  CAS  Google Scholar 

  15. Chu FK, Ma C, Zhang T, Xu ZM, Mu XW, Cai W, Zhou X, Ma SC, Zhou YF, Hu WZ, Song L (2020) Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset. Compos Part B Eng 190:107925

    Article  CAS  Google Scholar 

  16. Zhang T, Liu WS, Wang MX, Liu P, Pan YD, Liu DF (2016) Synergistic effect of an aromatic boronic acid derivative and magnesium hydroxide on the flame retardancy of epoxy resin. Polym Degrad Stab 130:257–263

    Article  CAS  Google Scholar 

  17. Chen SS, Ai LH, Zhang T, Liu P, Liu WS, Pan YH, Liu DF (2020) Synthesis and application of a triazine derivative containing boron as flame retardant in epoxy resins. Arab J Chem 13:2982–2994

    Article  CAS  Google Scholar 

  18. Shao ZB, Zhang MX, Li Y, Han Y, Ren L, Deng C (2018) A novel multi-functional polymeric curing agent: synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency. Chem Eng J 345:471–482

    Article  CAS  Google Scholar 

  19. Ma W, Xu B, Shao LS, Liu YT, Chen YJ, Qian LJ (2019) Synthesis of (1,4-methylenephenylphosphinic acid) piperazine and its application as a flame retardanin epoxy thermosets. Macromol Mater Eng 304:1900419

    Article  CAS  Google Scholar 

  20. You GY, Cheng ZQ, Tang YY, He HW (2015) Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate-triazine-based compound as flame retardant in epoxy resin. Ind Eng Chem Res 54:7309–7319

    Article  CAS  Google Scholar 

  21. Markwart JC, Battig A, Kuckhoff T, Schartel B, Wurm FR (2019) First phosphorus AB2 monomer for flame retardant hyperbranched polyphosphoesters: AB2 versus A2+B3. Polym Chem 10:5920–5930

    Article  CAS  Google Scholar 

  22. Battig A, Markwart JC, Wurm FR, Schartel B (2019) Hyperbranched phosphorus flame retardants: multifunctional additives for epoxy resins. Polym Chem 10:4346–4358

    Article  CAS  Google Scholar 

  23. Markwart JC, Battig A, Velencoso MM, Pollok D, Schartel B, Wurm FR (2019) Aromatic versus aliphatic hyperbranched polyphosphoesters as flame retardants in epoxy resins. Molecules 24:3901

    Article  CAS  Google Scholar 

  24. Tan Y, Shao ZB, Yu LX, Xu YJ, Rao WH, Chen L, Wang YZ (2016) Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression. Polym Degrad Stab 131:62–70

    Article  CAS  Google Scholar 

  25. Liu T, Nie YX, Chen RS, Zhang LD, Meng Y, Li XY (2015) Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms. J Mater Chem A 3:1188–1198

    Article  CAS  Google Scholar 

  26. Battig A, Markwart JC, Wurm FR, Schartel B (2020) Sulfur’s role in the flame retardancy of thio-ether-linked hyperbranched polyphosphoesters in epoxy resins. Eur Polym J 122:109390

    Article  CAS  Google Scholar 

  27. Hu X, Yang HY, Jiang YP, He HL, Liu HY, Huang H, Wan CJ (2019) Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin. J Hazard Mater 379:120793

    Article  CAS  Google Scholar 

  28. Zhang DH, Chen YK, Jia DM (2009) Toughness and reinforcement of diglycidyl ether of bisphenol-A by hyperbranched poly(trimellitic anhydride-butanediol glycol) ester epoxy resin. Polym Compo 30:918–925

    Article  CAS  Google Scholar 

  29. Yang JP, Feng QP, Chen ZK, Fu SY (2011) Superiority of nanosized over microsized hyperbranched polymer second phase in modifying brittle epoxy resin. J Appl Polym Sci 119:863–870

    Article  CAS  Google Scholar 

  30. Dhevi DM, Jaisankar SN, Pathak M (2013) Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur Polym J 49:3561–3572

    Article  CAS  Google Scholar 

  31. Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, Mai Y-W (2017) Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos Part A Appl Sci Manuf 103:74–83

    Article  CAS  Google Scholar 

  32. Liu XF, Liu BW, Luo X, Guo DM, Zhong HY, Chen L, Wang YZ (2020) A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chem Eng J 380:122471

    Article  CAS  Google Scholar 

  33. Wan JT, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, Wang DY (2015) A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. J Mater Chem A 3:21907–21921

    Article  CAS  Google Scholar 

  34. Li Q, Ma SQ, Wang S, Liu YL, Taher MA, Wang BB, Huang KF, Xu XW, Han YY, Zhu J (2020) Green and facile preparation of readily dual-recyclable thermosetting polymers with superior stability based on asymmetric acetal. Macromolecules 53:1474–1485

    Article  CAS  Google Scholar 

  35. Ma SQ, Webster DC (2015) Naturally occurring acids as cross-linkers to yield VOC-free, high-performance, fully bio-based, degradable thermosets. Macromolecules 48:7127–7137

    Article  CAS  Google Scholar 

  36. Yuan YC, Sun YX, Yan SJ, Zhao JQ, Liu SM, Zhang MQ, Zheng XX, Jia L (2017) Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat Commun 8:14657

    Article  Google Scholar 

  37. Li ZN, Chen MF, Li SS, Fan XM, Liu CP (2019) Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant. Macromol Mater Eng 304:1800619

    Article  CAS  Google Scholar 

  38. Sharifi M, Jang C, Abrams CF, Palmese GR (2015) Epoxy polymer networks with improved thermal and mechanical properties via controlled dispersion of reactive toughening agents. Macromolecules 48:7495–7502

    Article  CAS  Google Scholar 

  39. Ma C, Qiu SL, Yu B, Wang JL, Wang CM, Zeng WR, Hu Y (2017) Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphineoxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins. Chem Eng J 322:618–631

    Article  CAS  Google Scholar 

  40. Wei YX, Deng C, Chen H, Wan L, Wei WC, Wang YZ (2018) Novel core-shell hybrid nanosphere towards the mechanical enhancement and fire retardance of polycarbonate. ACS Appl Mater Inter 10:28036–28050

    Article  CAS  Google Scholar 

  41. Huo SQ, Yang S, Wang J, Cheng JW, Zhang QQ, Hu YF, Ding GP, Zhang QX, Song PG (2020) A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. J Hazard Mater 386:121984

    Article  CAS  Google Scholar 

  42. Peng CH, Chen T, Zeng BR, Chen GR, Yuan CH, Xu YT, Dai LZ (2020) Anderson-type polyoxometalate-based hybrid with high flame retardant efficiency for the preparation of multifunctional epoxy resin nanocomposites. Compos B Eng 186:107780

    Article  CAS  Google Scholar 

  43. Gong KL, Zhou KQ, Yu B (2020) Superior thermal and fire safety performances of epoxy-based composites with phosphorus-doped cerium oxide nanosheets. Appl Surf Sci 504:144314

    Article  CAS  Google Scholar 

  44. Carja I-D, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Coroaba A, Lisa G, López CG, Soriano MF, Pérezd VF, Sánchez MDR (2014) A straightforward, eco-friendly and cost-effective approach towards flame retardant epoxy resins. J Mater Chem A 2:16230–16241

    Article  CAS  Google Scholar 

  45. Fang F, Ran SY, Fang ZP, Song PA, Wang H (2019) Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Compos B Eng 165:406–416

    Article  CAS  Google Scholar 

  46. Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX (2014) Effect of a triazine ring-containing charring agent on fire retardancy and thermal degradation of intumescent flame retardant epoxy resins. Polym Advan Technol 25:223–232

    Article  CAS  Google Scholar 

  47. Zhang WC, Li XM, Yang RJ (2011) Pyrolysis and fire behaviour of epoxy composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stab 96:1821–1832

    Article  CAS  Google Scholar 

  48. Zhang J, Guo QP, Fox B (2010) Thermal and mechanical properties of a dendritic hydroxyl-functional hyperbranched polymer and tetrafunctional epoxy resin blends. J Polym Sci Polym Phys 48:417–424

    Article  CAS  Google Scholar 

  49. Qiu Y, Qian LJ, Chen YJ, Hao JW (2019) Improving the fracture toughness and flame retardant properties of epoxy thermosets by phosphaphenanthrene/siloxane cluster-like molecules with multiple reactive groups. Compos B Eng 178:107481

    Article  CAS  Google Scholar 

  50. Fang F, Huo SQ, Shen HF, Ran SY, Wang H, Song PA, Fang ZP (2020) A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos Commun 17:104–108

    Article  Google Scholar 

  51. Huang GB, Song PA, Liu LN, Han DM, Ge CH, Li RR, Guo QP (2016) Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites. Carbon 98:689–701

    Article  CAS  Google Scholar 

  52. Huang GB, Huo SQ, Xu XD, Chen W, Jin YX, Li RR, Song PA, Wang H (2019) Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke suppression of ABS nanocomposites from multifunctional graphene. Compos B Eng 177:107377

    Article  CAS  Google Scholar 

  53. Xu ZG, Song PG, Zhang J, Guo QP, Mai YW (2018) Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer. Compos Sci Technol 168:363–370

    Article  CAS  Google Scholar 

  54. Wang GY, Nie ZB (2016) Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products. Polym Degrad Stab 130:143–154

    Article  CAS  Google Scholar 

  55. Miao XP, Meng Y, Li XY (2015) A novel all-purpose epoxy-terminated hyperbranched polyether sulphone toughener for an epoxy/amine system. Polymer 60:88–95

    Article  CAS  Google Scholar 

  56. Jin QF, Misasi JM, Wiggins JS, Morgan SE (2015) Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier. Polymer 73:174–182

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 21805036, 21903015), the Natural Science Foundation of Fujian Province of China (Grant No. 2019J01668).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfeng Chen or Huagui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Lin, X., Liu, C. et al. An effective strategy to enhance the flame retardancy and mechanical properties of epoxy resin by using hyperbranched flame retardant. J Mater Sci 56, 5956–5974 (2021). https://doi.org/10.1007/s10853-020-05691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05691-3

Navigation