Skip to main content
Log in

Insights into key parameters of MnO2 catalyst toward high catalytic combustion performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controllable crystal phases (α-, β-, γ- and δ-) of MnO2 materials were developed via tuning hydrothermal conditions and investigated in toluene catalytic combustion. Extensive characterization techniques such as XRD, BET, SEM, TEM, H2-TPR and XPS were employed for analyzing the structure-performance relationship between physicochemical properties, such as specific surface area, vacancy/lattice oxygen and their mobility, reduction property and catalytic activity. Results indicated that the degradation activity of MnO2 catalyst greatly hinges on materials intrinsic properties, namely the vacancy oxygen generation, lattice oxygen content and their reduction behaviors. α-MnO2 exhibited the best catalytic activity (0.24 μmol/min @ 240 °C) among the obtained MnO2 materials; however, its cycle stability was inferior to that of δ-MnO2 catalyst owing to the different moderating effect of potassium ions remained within the tunnels or mezzanines structure. In addition, δ-MnO2 showed an easiest reduction property among all the manganese oxides investigated. The findings will shed lights on designing of Mn-based catalysts with a higher VOCs combustion capacity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)-A review. Atmos Environ 140:17–34

    Article  Google Scholar 

  2. Zhang ZX, Jiang Z, Shangguan WF (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    Article  CAS  Google Scholar 

  3. Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B Environ 100(3):403–412

    Article  CAS  Google Scholar 

  4. Schick L, Sanchis R, González-Alfaro V, Agouram S, López JM, Torrente-Murciano L, García T, Solsona B (2019) Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chem Eng J 366:100–111

    Article  CAS  Google Scholar 

  5. Chung WC, Mei DH, Tu X, Chang MB (2018) Removal of VOCs from gas streams via plasma and catalysis. Catal Rev 60:270–331

    Google Scholar 

  6. Li WB, Wang JX, Gong H (2009) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148(1–2):81–87

    Article  CAS  Google Scholar 

  7. Brock SL, Duan NG, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide Materials. Chem Mater 10:2619–2628

    Article  CAS  Google Scholar 

  8. Xu HM, Yan NQ, Qu Z, Liu W, Mei J, Huang WJ, Zhao SJ (2017) Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review. Environ Sci Technol 51(16):8879–8892

    Article  CAS  Google Scholar 

  9. Lyu Y, Li CT, Du XY, Zhu YC, Zhang YD, Li SH (2020) Catalytic oxidation of toluene over MnO2 catalysts with different Mn (II) precursors and the study of reaction pathway. Fuel 266:116610. https://doi.org/10.1016/j.fuel.2019.116610

    Article  CAS  Google Scholar 

  10. Wang F, Dai HX, Deng JG, Bai GM, Ji KM, Liu YX (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46(7):4034–4041

    Article  CAS  Google Scholar 

  11. Zhang JH, Li YB, Wang L, Zhang CB, He H (2015) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5(4):2305–2313

    Article  CAS  Google Scholar 

  12. Liang SF, Teng F, Bulgan G, Zong RL, Zhu YF (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112:5307–5315

    Article  CAS  Google Scholar 

  13. Xie YJ, Yu YY, Gong XQ, Guo Y, Guo YL, Wang YQ, Lu GZ (2015) Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm 17(15):3005–3014

    Article  CAS  Google Scholar 

  14. Hou JT, Li YZ, Mao MY, Ren L, Zhao XJ (2014) Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity. ACS Appl Mater Interfaces 6(17):14981–14987

    Article  CAS  Google Scholar 

  15. Yu P, Zhang X, Yao C, Ma YW (2010) Solution-combustion synthesis of ε-MnO2 for supercapacitors. Mater Lett 64(1):61–64

    Article  CAS  Google Scholar 

  16. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Simieniewska T (1985) Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  17. Wang X, Xie YC (2001) The promotion effects of Ba on manganese oxide for CH4 deep oxidation. Catal Lett 72(1/2):51–57

    Article  CAS  Google Scholar 

  18. Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Li JB, Du ZM, Shen ZX (2008) Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J Phys Chem C 112:12594–12598

    Article  CAS  Google Scholar 

  19. Jia JB, Zhang PY, Chen L (2016) Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B Environ 189:210–218

    Article  CAS  Google Scholar 

  20. Selvaraj AR, Rajendiran R, Chinnadurai D, Kumar GR, Kim H, Senthil K, Prabakar K (2018) Stabilization of cryptomelane α-MnO2 nanowires tunnels widths for enhanced electrochemical energy storage. Electrochim Acta 283:1679–1688

    Article  CAS  Google Scholar 

  21. Yin BS, Zhang SW, Jiang H, Qu FY, Wu X (2015) Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J Mater Chem A 3(10):5722–5729

    Article  CAS  Google Scholar 

  22. Yang WH, Su ZA, Xu ZH, Yang WN, Peng Y, Li JH (2020) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B Environ 260:118150. https://doi.org/10.1016/j.apcatb.2019.118150

    Article  CAS  Google Scholar 

  23. Ji J, Lu XL, Chen C, He M, Huang HB (2020) Potassium-modulated δ-MnO2 as robust catalysts for formaldehyde oxidation at room temperature. Appl Catal B Environ 260:118210–118221

    Article  CAS  Google Scholar 

  24. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ 99(1):353–363

    Article  CAS  Google Scholar 

  25. Sun H, Liu ZG, Chen S, Quan X (2015) The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J 270:58–65

    Article  CAS  Google Scholar 

  26. Li YH, Wang RH, Hao JM (2010) Role of lattice oxygen and lewis acid on ethanol oxidation over OMS-2 Catalyst. J Phys Chem C 114:10544–10550

    Article  CAS  Google Scholar 

  27. Li LM, Luo JJ, Liu YF, Jing FL, Su DS, Chu W (2017) Self-propagated flaming synthesis of highly active layered CuO-δ-MnO2 hybrid composites for catalytic total oxidation of toluene pollutant. ACS Appl Mater Interface 9(26):21798–21808

    Article  CAS  Google Scholar 

  28. Qin Y, Wang H, Dong C, Qu ZP (2019) Evolution and enhancement of the oxygen cycle in the catalytic performance of total toluene oxidation over manganese-based catalysts. J Catal 380:21–31

    Article  CAS  Google Scholar 

  29. Shi FJ, Wang F, Dai HX, Dai JX, Deng JG, Liu YX, Bai GM, Ji KM, Au CT (2012) Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene. Appl Catal A Gen 433–434:206–213

    Article  Google Scholar 

  30. Luo J, Zhang QH, Garcia Martinez J, Suib SL (2008) Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts. J Am Chem Soc 130:3198–3207

    Article  CAS  Google Scholar 

  31. Jain N, Roy A (2020) Phase & morphology engineered surface reducibility of MnO2 nanoheterostructures: Implications on catalytic activity towards CO oxidation. Mater Res Bull 121:110615. https://doi.org/10.1016/j.materresbull.2019.110615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Chinese Scholarship Council (CSC) for providing Luming’s Ph.D. scholarship and Institute of Chemical Engineering and Science (ICES, A*star, Singapore) for financial support. The authors kindly thank Luo Wang for experimental help and Zhan Wang for XPS characterization analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chu or Yan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chu, W. & Liu, Y. Insights into key parameters of MnO2 catalyst toward high catalytic combustion performance. J Mater Sci 56, 6361–6373 (2021). https://doi.org/10.1007/s10853-020-05672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05672-6

Navigation