Skip to main content
Log in

Facile synthesis of nitrogen-doped foam-like carbon materials from purslane stem as efficient metal-free catalysts for oxidative coupling of amines to imines

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We synthesized foam-like carbon materials from purslane stem by soxhlet extraction and pyrolysis two steps. The results demonstrate that the solvents used in soxhlet extraction can extract different components from purslane stem and further make significant impacts on the structure and composition of the obtained carbon materials. When applied to catalytic oxidative coupling of amines to imines, the most active catalyst is the carbon material derived from the purslane stem pretreated with ethanol, which can be attributed to its high surface area, large pore size and accessible active sites. In addition, the catalyst shows good stability, which can be recycled at least six times and applicable in the large-scale catalytic reaction. Moreover, the carbon materials derived from celery stem and apricot leaf pretreated with ethanol in soxhlet extraction also show higher catalytic activity than the carbon materials pretreated with ethyl acetate and water, which implies that this simple synthetic process is generally applicable to a certain extent. Hence, this study can provide new way toward the synthesis of high-performance carbon materials from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kobayashi S, Mori Y, Fossey JS, Salter MM (2011) Catalytic Enantioselective formation of C–C bonds by addition to Imines and hydrazones: a ten-year update. Chem Rev 111:2626–2704. https://doi.org/10.1021/cr100204f

    Article  CAS  Google Scholar 

  2. Greb L, Lehn JM (2014) Light-driven molecular motors: lmines as four-step or two-step unidirectional rotors. J Am Chem Soc 136:13114–13117. https://doi.org/10.1021/ja506034n

    Article  CAS  Google Scholar 

  3. Chen B, Wang LY, Gao S (2015) Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal 5:5851–5876. https://doi.org/10.1021/acscatal.5b01479

    Article  CAS  Google Scholar 

  4. Chen DJ, Wang YT, Klankermayer J (2010) Enantioselective Hydrogenation with chiral frustrated lewis pairs. Angew Chem Int Ed 49:9475–9478. https://doi.org/10.1002/anie.201004525

    Article  CAS  Google Scholar 

  5. Liu G, Cogan DA, Owens TD, Tang TP, Ellman JA (1999) Synthesis of Enantiomerically Pure N-tert-Butanesulfinyl Imines (tert-Butanesulfinimines) by the Direct Condensation of tert-Butanesulfinamide with Aldehydes and Ketones. J Org Chem 64:1278–1284. https://doi.org/10.1021/jo982059i

    Article  CAS  Google Scholar 

  6. Reeves JT, Visco MD, Marsini MA, Grinberg N, Busacca CA, Mattson AE, Senanayake CH (2015) A general method for imine formation using B(OCH2CF3)(3). Org Lett 17:2442–2445. https://doi.org/10.1021/acs.orglett.5b00949

    Article  CAS  Google Scholar 

  7. Naeimi H, Salimi F, Rabiei K (2006) Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. J Mol Catal A Chem 260:100–104. https://doi.org/10.1016/j.molcata.2006.06.055

    Article  CAS  Google Scholar 

  8. Yadav DKT, Bhanage BM (2015) Base-catalyzed synthesis of amides and imines via C–C and C=C bond cleavage. Rsc Adv 5:12387–12391. https://doi.org/10.1039/c4ra14234a

    Article  CAS  Google Scholar 

  9. Qin WL, Long S, Panunzio M, Biondi S (2013) Schiff bases: a short survey on an evergreen chemistry tool. Molecules 18:12264–12289. https://doi.org/10.3390/molecules181012264

    Article  CAS  Google Scholar 

  10. Schümperli MT, Hammond C, Hermans I (2012) Developments in the aerobic oxidation of amines. ACS Catal 2:1108–1117. https://doi.org/10.1021/cs300212q

    Article  CAS  Google Scholar 

  11. Xin BT, Zhou QF, Lu T (2012) Recent development in aerobic oxidation of amines. Mini-Rev Org Chem 9:319–340. https://doi.org/10.2174/157019312804070435

    Article  CAS  Google Scholar 

  12. Patil RD, Adimurthy S (2011) Copper-catalyzed aerobic oxidation of amines to imines under neat conditions with low catalyst loading. Adv Synth Catal 353:1695–1700. https://doi.org/10.1002/adsc.201100100

    Article  CAS  Google Scholar 

  13. Zhang LL, Wang WT, Wang AQ, Cui YT, Yang XF, Huang YQ, Liu XY, Liu WG, Son JY, Oji HS, Zhang T (2013) Aerobic oxidative coupling of alcohols and amines over Au-Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chem 15:2680–2684. https://doi.org/10.1039/c3gc41117f

    Article  CAS  Google Scholar 

  14. Jawale DV, Gravel E, Villemin E, Shah N, Geertsen V, Namboothiri INN, Doris E (2014) Co-catalytic oxidative coupling of primary amines to imines using an organic nanotube-gold nanohybrid. Chem Commun 50:15251–15254. https://doi.org/10.1039/c4cc07951e

    Article  CAS  Google Scholar 

  15. Huang H, Huang J, Liu YM, He HY, Cao Y, Fan KN (2012) Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chem 14:930–934. https://doi.org/10.1039/c2gc16681j

    Article  CAS  Google Scholar 

  16. Li XH, Antonietti M (2013) Polycondensation of Boron- and Nitrogen-Codoped Holey Graphene Monoliths from molecules: Carbocatalysts for Selective Oxidation. Angew Chem Int Ed 52:4572–4576. https://doi.org/10.1002/anie.201209320

    Article  CAS  Google Scholar 

  17. Chen CJ, Sun XF, Yan XP, Wu YH, Liu HZ, Zhu QG, Bediako BBA, Han BX (2020) Boosting CO2 electroreduction on N, P-Co-doped carbon aerogels. Angew Chem Int Ed 59:11123–11129. https://doi.org/10.1002/anie.202004226

    Article  CAS  Google Scholar 

  18. Yang P, Zhang JW, Liu D, Liu MJ, Zhang H, Zhao PS, Zhang CH (2018) Facile synthesis of porous nitrogen-doped carbon for aerobic oxidation of amines to imines. Microporous Mesoporous Mater 266:198–203. https://doi.org/10.1016/j.micromeso.2018.03.002

    Article  CAS  Google Scholar 

  19. Wang KZ, Jiang PB, Yang M, Ma P, Qin JH, Huang XK, Ma L, Li R (2019) Metal-free nitrogen-doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions. Green Chem 21:2448–2461. https://doi.org/10.1039/c9gc00908f

    Article  CAS  Google Scholar 

  20. Sevilla M, Valle-Vigon P, Fuertes AB (2011) N-Doped Polypyrrole-based porous carbons for CO2 Capture. Adv Funct Mater 21:2781–2787. https://doi.org/10.1002/adfm.201100291

    Article  CAS  Google Scholar 

  21. Chen B, Wang LY, Dai W, Shang SS, Lv Y, Gao S (2015) Metal-free and solvent-free oxidative coupling of amines to imines with Mesoporous carbon from Macrocyclic compounds. Acs Catal 5:2788–2794. https://doi.org/10.1021/acscatal.5b00244

    Article  CAS  Google Scholar 

  22. Yang F, Fan XX, Wang CX, Yang W, Hou LQ, Xu XW, Feng AD, Dong S, Chen K, Wang Y, Li YF (2017) P-doped nanomesh graphene with high-surface-area as an efficient metal-free catalyst for aerobic oxidative coupling of amines. Carbon 121:443–451. https://doi.org/10.1016/j.carbon.2017.05.101

    Article  CAS  Google Scholar 

  23. Shen K, Chen XD, Chen JY, Li YW (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. Acs Catal 6:5887–5903. https://doi.org/10.1021/acscatal.6b01222

    Article  CAS  Google Scholar 

  24. Hu XW, Long Y, Fan MY, Yuan M, Zhao H, Ma JT, Dong ZP (2019) Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis. Appl Catal B Environ 244:25–35. https://doi.org/10.1016/j.apcatb.2018.11.028

    Article  CAS  Google Scholar 

  25. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418. https://doi.org/10.1039/b822668g

    Article  CAS  Google Scholar 

  26. Varma RS (2019) Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. Acs Sustain Chem Eng 7:6458–6470. https://doi.org/10.1021/acssuschemeng.8b06550

    Article  CAS  Google Scholar 

  27. Hu WR, Xie Y, Lu S, Li PY, Xie TH, Zhang YK, Wang YB (2019) One-step synthesis of nitrogen-doped sludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants. Sci Total Environ 680:51–60. https://doi.org/10.1016/j.scitotenv.2019.05.098

    Article  CAS  Google Scholar 

  28. Dai L, Liu R, Si CL (2018) A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(L-lactide). Green Chem 20:1777–1783. https://doi.org/10.1039/c7gc03863a

    Article  CAS  Google Scholar 

  29. Wang ZH, Shen DK, Wu CF, Gu S (2018) State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem 20:5031–5057. https://doi.org/10.1039/c8gc01748d

    Article  CAS  Google Scholar 

  30. Zhu YY, Yu GQ, Yang J, Yuan M, Xu D, Dong ZP (2019) Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation. J Colloid Interface Sci 533:259–267. https://doi.org/10.1016/j.jcis.2018.08.067

    Article  CAS  Google Scholar 

  31. Liu L, Zhu YP, Su M, Yuan ZY (2015) Metal-free carbonaceous materials as promising heterogeneous catalysts. Chemcatchem 7:2765–2787. https://doi.org/10.1002/cctc.201500350

    Article  CAS  Google Scholar 

  32. Gao SY, Wei XJ, Fan H, Li LY, Geng KR, Wang JJ (2015) Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 13:518–526. https://doi.org/10.1016/j.nanoen.2015.02.031

    Article  CAS  Google Scholar 

  33. Samikannu A, Konwar LJ, Maki-Arvela P, Mikkola JP (2019) Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Appl Catal B Environ 241:41–51. https://doi.org/10.1016/j.apcatb.2018.09.019

    Article  CAS  Google Scholar 

  34. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259. https://doi.org/10.1039/c3ee22325f

    Article  CAS  Google Scholar 

  35. Sun YB, Liu K, Hou C, Liu J, Huang RK, Cao CY, Song WG (2019) Nitrogen, Sulfur co-doped carbon materials derived from the leaf, stem and root of amaranth as metal-free catalysts for selective oxidation of aromatic hydrocarbons. Chemcatchem 11:1010–1016. https://doi.org/10.1002/cctc.201801379

    Article  CAS  Google Scholar 

  36. Sun YB, Hao JL, Zhu XS, Zhang BB, Yin H, Xu SG, Hou C, Liu K (2020) Self-nitrogen-doped carbon materials derived from the petioles and blades of apricot leaves as metal-free catalysts for selective oxidation of aromatic alkanes. Carbon Lett 30:133–141. https://doi.org/10.1007/s42823-019-00078-0

    Article  Google Scholar 

  37. Yadav N, Singh MK, Yadav N, Hashmi SA (2018) High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon. J Power Sources 402:133–146. https://doi.org/10.1016/j.jpowsour.2018.09.032

    Article  CAS  Google Scholar 

  38. Gong YN, Li DL, Luo CZ, Fu Q, Pan CX (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140. https://doi.org/10.1039/c7gc01681f

    Article  CAS  Google Scholar 

  39. Xu ZX, Zhuang XD, Yang CQ, Cao J, Yao ZQ, Tang YP, Jiang JZ, Wu DQ, Feng XL (2016) Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv Mater 28:1981–1987. https://doi.org/10.1002/adma.201505131

    Article  CAS  Google Scholar 

  40. Zhou X, Wang PL, Zhang YG, Zhang XM, Jiang YF (2016) From waste cotton linter: a renewable environment-friendly biomass based carbon fibers preparation. Acs Sustain Chem Eng 4:5585–5593. https://doi.org/10.1021/acssuschemeng.6b01408

    Article  CAS  Google Scholar 

  41. Li TF, Luo G, Liu KH, Li X, Sun DM, Xu L, Li YF, Tang YW (2018) Encapsulation of Ni3Fe Nanoparticles in N-Doped Carbon Nanotube-Grafted Carbon Nanofibers as High-Efficiency Hydrogen Evolution Electrocatalysts. Adv Funct Mater 28:1805828. https://doi.org/10.1002/adfm.201805828

    Article  CAS  Google Scholar 

  42. Yuan Y, Ding YJ, Wang CH, Xu F, Lin ZS, Qin YY, Li Y, Yang ML, He XD, Peng QY, Li YB (2016) Multifunctional stiff carbon foam derived from bread. ACS Appl Mat Interfaces 8:16852–16861. https://doi.org/10.1021/acsami.6b03985

    Article  CAS  Google Scholar 

  43. Wang YM, Lin XJ, Liu T, Chen H, Chen S, Jiang ZJ, Liu J, Huang JL, Liu ML (2018) Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv Funct Mater 28:1806207. https://doi.org/10.1002/adfm.201806207

    Article  CAS  Google Scholar 

  44. Bian HY, Gao Y, Yang YQ, Fang GG, Dai HQ (2018) Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour Technol 256:321–327. https://doi.org/10.1016/j.biortech.2018.02.038

    Article  CAS  Google Scholar 

  45. Lei W, Deng YP, Li GR, Cano ZP, Wang XL, Luo D, Liu YS, Wang DL, Chen ZW (2018) Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. Acs Catal 8:2464–2472. https://doi.org/10.1021/acscatal.7b02739

    Article  CAS  Google Scholar 

  46. Wang QC, Ji YJ, Lei YP, Wang YB, Wang YD, Li YY, Wang SY (2018) Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-Air batteries. Acs Energy Lett 3:1183–1191. https://doi.org/10.1021/acsenergylett.8b00303

    Article  CAS  Google Scholar 

  47. Yang SL, Peng L, Huang PP, Wang XS, Sun YB, Cao CY, Song WG (2016) Nitrogen, Phosphorus, and Sulfur Co-Doped Hollow Carbon Shell as Superior Metal-Free Catalyst for Selective Oxidation of Aromatic Alkanes. Angew Chem Int Ed 55:4016–4020. https://doi.org/10.1002/anie.201600455

    Article  CAS  Google Scholar 

  48. Zhao R, Xia W, Lin C, Sun JL, Mahmood A, Wang QF, Qiu B, Tabassum H, Zou RQ (2017) A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction. Carbon 114:284–290. https://doi.org/10.1016/j.carbon.2016.12.027

    Article  CAS  Google Scholar 

  49. Wu J, Zheng XJ, Jin C, Tian JH, Yang RZ (2015) Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 92:327–338. https://doi.org/10.1016/j.carbon.2015.05.013

    Article  CAS  Google Scholar 

  50. Wahid M, Parte G, Phase D, Ogale S (2015) Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. J Mater Chem A 3:1208–1215. https://doi.org/10.1039/c4ta06068g

    Article  CAS  Google Scholar 

  51. Zhang JA, Song Y, Kopec M, Lee J, Wang ZY, Liu SY, Yan JJ, Yuan R, Kowalewski T, Bockstaller MR, Matyjaszewski K (2017) Facile aqueous route to nitrogen-doped mesoporous carbons. J Am Chem Soc 139:12931–12934. https://doi.org/10.1021/jacs.7b08133

    Article  CAS  Google Scholar 

  52. Qi W, Yan PQ, Su DS (2018) Oxidative Dehydrogenation on Nanocarbon: insights into the reaction mechanism and kinetics via in situ experimental methods. Acc Chem Res 51:640–648. https://doi.org/10.1021/acs.accounts.7b00475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by Natural Science Foundation of Shandong Province (ZR2018LB009), National Natural Science Foundation of China (NSFC 21801180), and the academic promotion programme of Shandong First Medical University (2019QL008). We thank Shandong First Medical University and Shiyanjia Lab (http://www.shiyanjia.com) for help in instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbin Sun or Kun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Hou, C., Cao, X. et al. Facile synthesis of nitrogen-doped foam-like carbon materials from purslane stem as efficient metal-free catalysts for oxidative coupling of amines to imines. J Mater Sci 56, 6124–6134 (2021). https://doi.org/10.1007/s10853-020-05664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05664-6

Navigation