Skip to main content
Log in

Direct synthesis of hierarchical zeolites through mesoporous 3D wormhole framework using single-head quaternary ammonium salt as structure-directing agent

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical aluminosilicate zeolites with uniform mesoporosity were successfully synthesized by one-stage crystallization under constant temperature with a novel single-head quaternary ammonium salt ([C18H37–N+(CH3)2–C6H12–N(CH3)2]Br) as mesoporogen and structure-directing agent (SDA). Through precisely controlling the molar ratio of Si/Al and synthetic time, the mesoporous 3D wormhole framework (MCM-48) and crystalline microporous MFI structure were simultaneously constructed, revealed by a series of in-depth characteristic studies. Combining the advantages of the significantly improved diffusion from the mesoporous MCM-48 and the strong framework acidity of the crystalline microporous MFI zeolite, the hierarchical aluminosilicate zeolites exhibited outstanding catalytic activity with good reusability towards bulky aldol condensation compared with the conventional meso- or microporous zeolites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7.
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Iyoki K, Kikumasa K, Onishi T, Yonezawa Y, Chokkalingam A, Yanaba Y, Matsumoto T, Osuga R, Elangovan SP, Kondo JN, Endo A, Okubo T, Wakihara T (2020) Extremely stable zeolites developed via designed liquid-mediated treatment. J Am Chem Soc 142:3931–3938

    CAS  Google Scholar 

  2. Anderson MW, Gebbie-Rayet JT, Hill AR, Farida N, Attfield MP, Cubillas P, Blatov VA, Proserpio DM, Akporiaye D, Arstad B, Gale JD (2017) Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 544:456–459

    CAS  Google Scholar 

  3. Feng G, Cheng P, Yan W, Boronat M, Li X, su j-h, Wang J, Li Y, Corma A, Xu R, Yu J, (2016) Accelerated crystallization of zeolites via hydroxyl free radicals. Science 351:1188–1191

    CAS  Google Scholar 

  4. Davis M (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    CAS  Google Scholar 

  5. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420

    CAS  Google Scholar 

  6. Wang Z, Li T, Jiang Y, Lafon O, Liu Z, Trébosc J, Baiker A, Amoureux J-P, Huang J (2020) Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nat Commun 11(225):1–9

    Article  CAS  Google Scholar 

  7. Gallego EM, Portilla MT, Paris C, León-Escamilla A, Boronat M, Moliner M, Corma A (2017) “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355:1051–1054

    CAS  Google Scholar 

  8. Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R (2017) Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal 8:770–784

    Google Scholar 

  9. Cheng J, Pei S, Yue B, Qian L, He C, Zhou Y, He H (2008) Synthesis and characterization of hollow zeolite microspheres with a mesoporous shell by O/W/O emulsion and vapor-phase transport method. Microporous Mesoporous Mater 115:383–388

    CAS  Google Scholar 

  10. Wang Z, Yu J, Xu R (2012) Needs and trends in rational synthesis of zeolitic materials. Chem Soc Rev 41:1729–1741

    Google Scholar 

  11. Tao H, Yang H, Liu X, Ren J, Wang Y, Lu G (2013) Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures. Chem Eng J 225:686–694

    CAS  Google Scholar 

  12. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831

    CAS  Google Scholar 

  13. Kim J, Choi M, Ryoo R (2010) Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal 269:219–228

    CAS  Google Scholar 

  14. Kresge CT, Leonowicz ME, Roth W, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism. Nature 359:710–712

    CAS  Google Scholar 

  15. Zhao DY, Feng JL, Huo Q, Melosh N, Fredrickson G, Chmelka B, Stucky G (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    CAS  Google Scholar 

  16. Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous material from a layered polysilicate. Chem Commun 24:680–682

    Google Scholar 

  17. Meng X, Nawaz F, Xiao F-S (2009) Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today 4:292–301

    CAS  Google Scholar 

  18. Chen L-H, Li XY, Rooke J, Zhang YH, Yang X-Y, Tang Y, Xiao FS, Su BL (2012) Hierarchically structured zeolites: Synthesis, mass transport properties and applications. J Mater Chem 22:17381–17403

    CAS  Google Scholar 

  19. Teh LP, Triwahyono S, Jalil AA, Mukti RR, Aziz MAA, Shishido T (2015) Mesoporous ZSM5 having both intrinsic acidic and basic sites for cracking and methanation. Chem Eng J 270:196–204

    CAS  Google Scholar 

  20. Yang J, Yu S, Hu H, Zhang Y, Lu J, Wang J, Yin D (2011) Synthesis of ZSM-5 hierarchical microsphere-like particle by two stage varying temperature crystallization without secondary template. Chem Eng J 166:1083–1089

    CAS  Google Scholar 

  21. Fan W, Snyder M, Kumar S, Lee P-S, Yoo W, McCormick A, Penn RL, Stein A, Tsapatsis M (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7:984–991

    CAS  Google Scholar 

  22. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science 333:328–332

    CAS  Google Scholar 

  23. Groen JC, Bach T, Ziese U, Paulaime-van Donk AM, de Jong KP, Moulijn JA, Pérez-Ramírez J (2005) Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J Am Chem Soc 127:10792–10793

    CAS  Google Scholar 

  24. Jacobsen C, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117

    CAS  Google Scholar 

  25. Ogura M, Shinomiya S-y, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali-treatment technique — new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A Gen 219:33–43

    CAS  Google Scholar 

  26. Choi M, Cho H, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723

    CAS  Google Scholar 

  27. Liu S, Cao X, Li L, Li C, Ji Y, Xiao F-S (2008) Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids Surf, A 318:269–274

    CAS  Google Scholar 

  28. Wang L, Zhang Z, Yin C, Shan Z, Xiao F-S (2010) Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater 131:58–67

    CAS  Google Scholar 

  29. Xiao F-S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D, Schlögl R, Yokoi T, Tatsumi T (2006) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem Int Ed 45:3090–3093

    CAS  Google Scholar 

  30. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    CAS  Google Scholar 

  31. Camesano TA, Nagarajan R (2000) Micelle formation and CMC of gemini surfactants: a thermodynamic model. Colloids Surf, A 167:165–177

    CAS  Google Scholar 

  32. Zhang J, Ding H, Zhang Y, Yu C, Bai P, Guo X (2018) An efficient one-pot strategy for synthesizing hierarchical aluminosilicate zeolites using single structure directing agent. Chem Eng J 335:822–830

    CAS  Google Scholar 

  33. Huo Q, Margolese DI, Stucky GD (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mat 8:1147–1160

    CAS  Google Scholar 

  34. Canlas CP, Pinnavaia TJ (2016) Silica mesophases intercalated by cross-linked micelles of a sustainable oleyl diamine surfactant and metal ion uptake properties thereof. New J Chem 40:4406–4413

    CAS  Google Scholar 

  35. Schmidt R, Stöcker M, Akporiaye D, Heggelund Tørstad E, Olsen A (1995) High-resolution electron microscopy and X-ray diffraction studies of MCM-48. Microporous Mater 5:1–7

    CAS  Google Scholar 

  36. Chen F, Huang L, Yang X, Wang Z (2013) Synthesis of Al-substituted MCM-41 and MCM-48 solid acids with mixed cationic–anionic surfactants as templates. Mater Lett 109:299–301

    CAS  Google Scholar 

  37. Huo QS, Leon R, Petroff P, Stucky G (1995) Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science 268:1324–1327

    CAS  Google Scholar 

  38. Romero A, Alba M, Klinowski J (1998) Aluminosilicate mesoporous molecular sieve MCM-48. J Phys Chem B 102:123–128

    CAS  Google Scholar 

  39. Xia Y, Mokaya R (2003) On the hydrothermal stability of mesoporous aluminosilicate MCM-48 materials. J Phys Chem B 107:6954–6960

    CAS  Google Scholar 

  40. Li Y, Liu D, Liu S, Wang W, Xie S, Zhu X, Xu L (2008) Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites. J Nat Gas Chem 17:69–74

    CAS  Google Scholar 

  41. Sadrara M, Khanmohammadi Khorrami M, Bagheri Garmarudi A (2019) Improved catalytic performance of mesoporous ZSM-5 nanocrystalline zeolite prepared by the cationic surfactant-ammonium salt mixed agent method in the methanol to gasoline reaction. React Kinet Mech Cat 128:1111–1126

    CAS  Google Scholar 

  42. Gaydhankar TR, Taralkar US, Jha RK, Joshi PN, Kumar R (2005) Textural/structural, stability and morphological properties of mesostructured silicas (MCM-41 and MCM-48) prepared using different silica sources. Catal Commun 6:361–366

    CAS  Google Scholar 

  43. Xiao Z, Zhang J, Ding H, Cheng Y, Bai P, Guo X (2019) n-C22H45N+(CH3)2CH2(CH2)4CH2N(CH3)2Br−: A new effective one-step structure directing agent to synthesize hierarchical MFI zeolite with ordered hexagonal mesopores. Microporous Mesoporous Mater 273:142–147

    CAS  Google Scholar 

  44. Wang Y, Ma J, Ren F, Du J, Li R (2017) Hierarchical architectures of ZSM-5 nanocrystalline aggregates with particular catalysis for lager molecule reaction. Microporous Mesoporous Mater 240:22–30

    CAS  Google Scholar 

  45. Liu H, Wang H, Xing A-H, Cheng J-H (2019) Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization. J Phys Chem C 123:15637–15647

    CAS  Google Scholar 

  46. Blin J, Herrier G, Otjacques C (2000) New way to synthesize MCM-41 and MCM-48 materials with tailored pore sizes. Stud Surf Sci Catal 129:57–66

    CAS  Google Scholar 

  47. Lee JW, Shim WG, Moon H (2004) Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48. Microporous Mesoporous Mater 73:109–119

    CAS  Google Scholar 

  48. Guo Y-P, Wang H-J, Guo Y-J, Guo L-H, Chu L-F, Guo C-X (2011) Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem Eng J 166:391–400

    CAS  Google Scholar 

  49. Chu N, Yang J, Li C, Cui J, Zhao Q, Yin X, Lu J, Wang J (2009) An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous Mesoporous Mater 118:169–175

    CAS  Google Scholar 

  50. Yu J, Li M, Tian Y, Ma X, Li Y (2013) Effect of Si/Al ratio and a secondary hydrothermal treatment on the properties of Al-MSU-SFAU. J Porous Mat 20:1387–1393

    CAS  Google Scholar 

  51. Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Mater 2:17–26

    Google Scholar 

  52. Liu Z, Wei Y, Qi Y, Zhang S, Zhang Y, Liu Z (2006) Synthesis of MCM-41 type materials with remarkable hydrothermal stability from UTM-1. Microporous Mesoporous Mater 93:205–211

    CAS  Google Scholar 

  53. Fyfe CA, Gobbi GC, Hartman JS, Klinowski J, Thomas JM (1982) Solid-state magic-angle spinning. Aluminum-27 nuclear magnetic resonance studies of zeolites using a 400-MHz high-resolution spectrometer. J Phys Chem 86:1247–1250

    CAS  Google Scholar 

  54. Mokaya R (2000) Al content dependent hydrothermal stability of directly synthesized aluminosilicate MCM-41. J Phys Chem B 104:8279–8286

    CAS  Google Scholar 

  55. Janda A, Bell AT (2013) Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI. J Am Chem Soc 135:19193–19207

    CAS  Google Scholar 

  56. Zhang H, Wang L, Zhang D, Meng X, Xiao F-S (2016) Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous Mesoporous Mater 233:133–139

    CAS  Google Scholar 

  57. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    CAS  Google Scholar 

  58. Zhang Q, Yang H, Yan W (2014) Effect of ethanol on the crystallinity and acid sites of MFI zeolite nanosheets. RSC Adv 4:56938–56944

    CAS  Google Scholar 

  59. Ding H, Xiao Z, Zhang J, Fu T, Bai P, Guo X (2018) Hierarchical hexagonal zeolites: intrinsic transformation directed by precise control of synthetic conditions. Ind Eng Chem Res 57:5282–5290

    CAS  Google Scholar 

  60. Hsieh HK, Lee TH, Wang JP, Wang J-J, Lin C-N (1998) Synthesis and anti-inflammatory effect of chalcones and related compounds. Pharm Res 15:39–46

    CAS  Google Scholar 

  61. Climent MJ, Corma A, Iborra S, Primo J (1995) Base catalysis for fine chemicals production: Claisen-Schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest. J Catal 151:60–66

    CAS  Google Scholar 

  62. Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J (2011) Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chem Eur J 17:14618–14627

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Nos. 22078235, no. 22008176) and China Postdoctoral Science Foundation (2019M661022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiafei Lyu or Xianghai Guo.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Ding, H., Zhang, J. et al. Direct synthesis of hierarchical zeolites through mesoporous 3D wormhole framework using single-head quaternary ammonium salt as structure-directing agent. J Mater Sci 56, 6110–6123 (2021). https://doi.org/10.1007/s10853-020-05659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05659-3

Navigation