Skip to main content
Log in

In situ pair distribution function analysis of crystallizing Fe-silicate melts

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structures of a series of Na2O–FeO–Fe2O3–SiO2 melts with Si/Fe = 1, 2, or 3 have been characterized via synchrotron X-ray total scattering using aerodynamic levitation, a containerless technique, paired with laser heating. The melt structure has been simulated using empirical potential structure refinement (EPSR) based on X-ray scattering data and molecular dynamics (MD) simulations with effective partial charge potentials. Pair distribution functions and coordination numbers of cations in the melt were obtained from the data refinement and from the MD simulations. Iron redox and accompanying density were modeled for each composition assuming either (1) oxidized (all Fe3+) or (2) reduced (some Fe2+) to the level predicted for the Ar levitator environment from a literature model. The actual redox of the melts appears to be intermediate, with some Fe2+ but not as much as assumed from the literature model of redox. Comparison of EPSR and MD models at the same redox conditions indicates generally good agreement, and precise values of coordination numbers depend sensitively on the assumptions for cutoff lengths. Stepwise cooling of each melt in the series resulted in formation of magnetite on the free surface of the sample, but no silica-containing crystalline phases were observed. This study provides a comprehensive assessment of coupled factors (composition, redox, density) needed to assess high-temperature in situ structural measurements of simplified iron silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Drewitt J, Sanloup C, Bytchkov A, Brassamin S, Hennet L (2013) Structure of (FexCa(1–x))O)y(SiO­2)(1-y­) liquids and glasses from high-energy x-ray diffraction: Implications for the structure of natural basaltic magmas. Phys Rev B 87:224201–224210

    Article  CAS  Google Scholar 

  2. Waychunas GA, Brown GE, Ponader CW, Jackson WE (1988) Evidence from X-ray absorption for network-forming Fe2+ in molten alkali silicates. Nature 332:251–253

    Article  CAS  Google Scholar 

  3. Waseda Y, Waseda Y, Shiraishi Y, Toguri J (1979) The structure of the molten FeO-Fe2O3-SiO2 system. J Jpn Inst Met 43:1099–1108

    Article  CAS  Google Scholar 

  4. Alderman OLG, Lazareva L, Wilding MC, Benmore CJ, Heald SM, Johnson CE, Johnson JA, Hah HY, Sendelbach S, Tamalonis A, Skinner LB, Parise JB, Weber JKR (2017) Local structural variation with oxygen fugacity in Fe2SiO4+x fayalitic iron silicate melts. Geochim Cosmochim Acta 203:15–36

    Article  CAS  Google Scholar 

  5. Neuville D, Hennet L, Florian P, de Ligny D (2014) In situ high-temperature experiments. Rev Mineral Geochem 78:779–800

    Article  CAS  Google Scholar 

  6. Giuli G, Paris E, Hess K-U, Dingwell DB, Cicconi MR, Eeckhout SG, Fehr KT, Valenti P (2011) XAS determination of the Fe local environment and oxidation state in phonolite glasses. Am Mineral 96:631–636

    Article  CAS  Google Scholar 

  7. Losq CL, Cicconi MR, Neuville D (2020) Iron in silicate glasses and melts: implications for volcanological processes. ESSOAr. https://doi.org/10.1002/essoar.10503261.1

    Article  Google Scholar 

  8. Mysen B, Richet P (2005) Silicate glasses and melts: properties and structure. Elsevier, Amsterdam

    Google Scholar 

  9. Di Genova D, Zandona A, Deubener J (2020) Unravelling the effect of nano-heterogeneity on the viscosity of silicate melts: Implications for glass manufacturing and volcanic eruptions. J Non-Cryst Solids 545:120248

    Article  CAS  Google Scholar 

  10. Ahmadzadeh M, Scrimshire A, Mottram L, Stennett MC, Hyatt NC, Bingham PA, McCloy JS (2020) Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics. Am Mineral 105:13875–11384

    Article  Google Scholar 

  11. Ahmadzadeh M, Marcial J, McCloy J (2017) Crystallization of iron-containing sodium aluminosilicate glasses in the NaAlSiO4-NaFeSiO4 join. J Geophys Res Solid Earth 122:2504–2524

    Article  CAS  Google Scholar 

  12. Peterson RA, Buck EC, Chun J, Daniel RC, Herting DL, Ilton ES, Lumetta GJ, Clark SB (2018) Review of the scientific understanding of radioactive waste at the U.S DOE Hanford Site. Environ Sci Technol 52:381–396

    Article  CAS  Google Scholar 

  13. Goel A, McCloy JS, Pokorny R, Kruger AA (2019) Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass–an overview. J Non-Cryst Solids X 4:100033

    Google Scholar 

  14. Guillen DP, Lee S, Hrma P, Traverso J, Pokorny R, Klouzek J, Kruger AA (2020) Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass. J Non-Cryst Solids 531:119860

    Article  CAS  Google Scholar 

  15. Pegg I (2015) Behavior of technetium in nuclear waste vitrification processes. J Radioanal Nucl Chem 305:1–6

    Article  CAS  Google Scholar 

  16. Cicconi MR, Le Losq C, Moretti R, Neuville DR (2020) Magmas are the largest repositories and carriers of earth’s redox processes. Elements 16:173–178

    Article  CAS  Google Scholar 

  17. Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Cryst Solids 344:176–188

    Article  CAS  Google Scholar 

  18. Farges F, Rossano S, Lefrère Y, Wilke M, Brown GEJ (2005) Iron in silicate glasses: a systematic analysis of pre-edge, XANES and EXAFS features. Physica Scripta 2005:957–959

    Article  Google Scholar 

  19. Liu Q, Lange RA (2006) The partial molar volume of Fe2O3 in alkali silicate melts: Evidence for an average Fe3+ coordination number near five. Am Mineral 91:385–393

    Article  CAS  Google Scholar 

  20. Alderman OLG, Wilding MC, Tamalonis A, Sendelbach S, Heald SM, Benmore CJ, Johnson CE, Johnson JA, Hah HY, Weber JKR (2017) Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses. Chem Geol 453:169–185

    Article  CAS  Google Scholar 

  21. Cicconi MR, Giuli G, Ertel-Ingrisch W, Paris E, Dingwell DB (2015) The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. Am Mineral 100:1610–1619

    Article  Google Scholar 

  22. Le Losq C, Moretti R, Oppenheimer C, Baudelet F, Neuville DR (2020) In situ XANES study of the influence of varying temperature and oxygen fugacity on iron oxidation state and coordination in a phonolitic melt. Contrib Mineral Petrol 175:64

    Article  CAS  Google Scholar 

  23. Le Losq C, Berry AJ, Kendrick MA, Neuville DR, O’Neill HSC (2019) Determination of the oxidation state of iron in Mid-Ocean Ridge basalt glasses by Raman spectroscopy. Am Mineral 104:1032–1042

    Article  Google Scholar 

  24. Saloman EB, Hubbell JH, Scofield JH (1988) X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92. Nucl Data Sheets 53:1–196

    Google Scholar 

  25. Thomas D, Weigel C, Cormier L, Galoisy L, Calas G, Bowron D, Beuneu B (2006) Determination of Fe3+ sites in a NaFeSi2O6 glass by neutron diffraction with isotopic substitution coupled with numerical simulation. Appl Phys Lett 89:141911–141913

    Article  CAS  Google Scholar 

  26. Weigel C, Cormier L, Calas G, Galoisy L, Bowron DT (2008) Nature and distribution of iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR simulation. J Non-Cryst Solids 354:5378–5385

    Article  CAS  Google Scholar 

  27. Benmore CJ (2012) A review of high-energy X-ray diffraction from glasses and liquids. ISRN Mater Sci 2012:852905

    Article  CAS  Google Scholar 

  28. Hannon AC (2015) Neutron Diffraction Techniques for Structural Studies of Glasses. In: Affatigato M (ed) Modern glass characterization. American Ceramic Society & Wiley, Hoboken, New Jersey, pp 158–240

    Google Scholar 

  29. Wilding M, Benmore C, Weber R, Alderman O, Tamalonis A, McMillan PF, Wilson M, Ribiero MCC, Parise J (2019) Exploring the structure of glass-forming liquids using high energy X-ray diffraction, containerless methodology and molecular dynamics simulation. J Non-Cryst Solids X 3:100027–100027

    Google Scholar 

  30. Keen D (2001) A comparison of various commonly used correlation functions for describing total scattering. J Appl Cryst 34:172–177

    Article  CAS  Google Scholar 

  31. Nienhuis ET, Saleh M, Marcial J, Kriegsman K, Lonergan J, Lipton AS, Guo X, McCloy JS (2019) Structural characterization of ZnSO4-K2SO4-NaCl glasses. J Non-Cryst Solids 524:119639

    Article  CAS  Google Scholar 

  32. Marcial J, McCloy J (2019) Role of short range order on crystallization of tectosilicate glasses: a diffraction study. J Non-Cryst Solids 505:131–143

    Article  CAS  Google Scholar 

  33. Price DL (2010) High-temperature levitated materials. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  34. Weber JKR, Benmore CJ, Jennings G, Wilding MC, Parise JB (2010) Instrumentation for fast in-situ X-ray structure measurements on non-equilibrium liquids. Nucl Instr Meth A 624:728–730

    Article  CAS  Google Scholar 

  35. Hammersley AP, Svensson SO, Thompson A (1994) Calibration and correction of spatial distortions in 2D detector systems. Nucl Instrum Methods Phys Res A 346:312–321

    Article  CAS  Google Scholar 

  36. Soper A (2011) GudrunN & GudrunX: Programs for correcting raw neutron and X-ray diffraction data to differential scattering cross section, Rutherford Appleton Laboratory Technical Report

  37. Jayasuriya KD, O’Neill HSC, Berry AJ, Campbell SJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89:1597–1609

    Article  CAS  Google Scholar 

  38. Sigurdsson H (2000) Encyclopedia of volcanoes. Academic Press, San Diego, San Diego

    Book  Google Scholar 

  39. Du J, Cormack AN (2004) The medium range structure of sodium silicate glasses: a molecular dynamics simulation. J Non-Cryst Solids 349:66–79

    Article  CAS  Google Scholar 

  40. Sun W, Du J (2019) Interfacial structures of spinel crystals with borosilicate nuclear waste glasses from molecular dynamics simulations. J Am Ceram Soc 102:4583–4601

    Article  CAS  Google Scholar 

  41. Deng L, Du J (2019) Development of boron oxide potentials for computer simulations of multicomponent oxide glasses. J Am Ceram Soc 102:2482–2505

    Article  CAS  Google Scholar 

  42. Du J, Corrales LR (2006) Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study. J Non-Cryst Solids 352:3255–3269

    Article  CAS  Google Scholar 

  43. Du J (2019) Molecular dynamics simulations of oxide glasses. In: Musgraves JD, Hu J, Calvez L (eds) Springer Handbook of Glass. Springer Nature, Switzerland, pp 1129–1151

    Google Scholar 

  44. Soper AK (1998) Determination of the orientational pair correlation function of a molecular liquid from diffraction data. J Mol Liq 78:179–200

    Article  CAS  Google Scholar 

  45. Levy D, Giustetto R, Hoser A (2012) Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study. Phys Chem Mineral 39:169–176

    Article  CAS  Google Scholar 

  46. Wang Z, Cooney TF, Sharma SK (1995) In situ structural investigation of iron-containing silicate liquids and glasses. Geochim Cosmochim Acta 59:1571–1577

    Article  CAS  Google Scholar 

  47. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58:594–618

    CAS  Google Scholar 

  48. Keppler H (1992) Crystal field spectra and geochemistry of transition metal ions in silicate melts and glasses. Am Mineral 77:62–75

    CAS  Google Scholar 

  49. Wright AC (2014) Crystalline-like ordering in melt-quenched network glasses? J Non-Crys Solids 401:4–26

    Article  CAS  Google Scholar 

  50. Massobrio C, Pasquarello A (2001) Origin of the first sharp diffraction peak in the structure factor of disordered network-forming systems: Layers or voids? J Chem Phys 114:7976–7979

    Article  CAS  Google Scholar 

  51. Shi Y, Neuefeind J, Ma D, Page K, Lamberson LA, Smith NJ, Tandia A, Song AP (2019) Ring size distribution in silicate glasses revealed by neutron scattering first sharp diffraction peak analysis. J Non-Cryst Solids 516:71–81

    Article  CAS  Google Scholar 

  52. Di Genova D, Sicola S, Romano C, Vona A, Fanara S, Spina L (2017) Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem Geol 475:76–86

    Article  CAS  Google Scholar 

  53. Hughes EC, Buse B, Kearns SL, Blundy JD, Kilgour G, Mader HM, Brooker RA, Balzer R, Botcharnikov RE, Di Genova D, Almeev RR, Riker JM (2018) High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe. Am Mineral 103:1473–1486

    Article  Google Scholar 

  54. Dvoryankina G, Pinsker Z (1960) The electron diffraction pattern investigation of Fe3O4. Dokl Akad Nauk SSSR 132:110–113

    CAS  Google Scholar 

  55. Hrma P (2010) Crystallization during processing of nuclear waste glass. J Non-Cryst Solids 356:3019–3025

    Article  CAS  Google Scholar 

  56. Kruger AA (2013) Advances in glass formulations for hanford high-alumimum, high-iron and enhanced sulphate management in HLW streams–13000. Hanford Site (HNF), Richland

    Google Scholar 

Download references

Acknowledgements

Levitation experiments were conducted at the Advanced Photon Source, Argonne National Laboratory, Argonne, IL, on beamline 6-ID-D on GUP-60502. The authors would like to thank Chris Benmore of the Advanced Photon Source and Martin Wilding of Manchester University Harwell for the assistance with the total scattering experiments, and Richard Weber of Materials Development Inc. for use of the laser hearth for sample preparation. The authors thank Scott Boroughs for help with the electron microprobe measurements. The authors also thank José Marcial for assistance with processing the total scattering data. This manuscript benefited greatly from the careful reading and comments of several reviewers.

Funding

The research was funded by the Department of Energy, Office of Environmental Management, through the Office of River Protection, Waste Treatment and Immobilization Plant Federal Project Office, contract numbers DE-EM002904 and 89304017CEM000001, under the direction of Dr. Albert A. Kruger. JD acknowledges National Science Foundation (NSF) support with the DMR Ceramics program under grant 1508001 and UNT HPC for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. McCloy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nienhuis, E.T., Tuheen, M., Du, J. et al. In situ pair distribution function analysis of crystallizing Fe-silicate melts. J Mater Sci 56, 5637–5657 (2021). https://doi.org/10.1007/s10853-020-05643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05643-x

Navigation