Skip to main content

Advertisement

Log in

Microstructure and tribomechanical properties of multilayer TiZrN/TiSiN composite coatings with nanoscale architecture by cathodic-arc evaporation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multilayer TiZrN/TiSiN coatings were deposited on steel substrate by the cathodic-arc evaporation technique. The TiZr (75:25 at. %) and TiSi (95:5 at. %) alloy cathodes served as evaporation sources. Scanning electron microscopy with energy-dispersive spectroscopy, secondary ion mass-spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy were employed to investigate the microstructure, elemental composition, phase state and bonding structure of the deposited coatings. Nanoindentation and ball-on-disk tribology tests were used to measure the mechanical and tribological features of the coatings, such as hardness, elastic modulus, toughness, friction coefficient and wear rate. The results show that all multilayers were fcc structures with a strong preferred orientation along (111) plane. The coherent growth of the multilayers contributed to the formation of the fine-grained structure with crystallites of 9.2–11.6 nm size and a low level of residual stresses of− (3.5–5.3) GPa. All multilayer coatings exhibited high hardness up to 38.2 ± 1.15 GPa and elastic modulus up to 430 ± 12.9 GPa, indicating higher resistance against plastic deformation compared to TiZrN and TiSiN films. The result of ball-on-disk wear tests showed that the multilayer sample with the best structural features (modulation period of 20.4 nm, 0.86 at. % of Si, the crystallite size of 9.2 nm and residual stress of− 3.5 GPa) demonstrated the lowest friction coefficient of 0.844 and better wear rate of 3.32·10–5 mm3/N m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations. Data will be made available on request of the readers.

References

  1. Uddin GM, Jawad M, Ghufran M (2019) Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing. Int J Adv Manuf Technol 102:1391–1404. https://doi.org/10.1007/s00170-018-03244-2

    Article  Google Scholar 

  2. Yeh TS, Wu JM, Hu LJ (2008) The properties of TiN thin films deposited by pulsed direct current magnetron sputtering. Thin Solid Films 516:7294–7298. https://doi.org/10.1016/j.tsf.2008.01.001

    Article  CAS  Google Scholar 

  3. Mubarak A, Akhter P, Hamzah E et al (2008) Effect of coating thickness on the properties of TiN coatings deposited on tool steels using cathodic arc pvd technique. Surf Rev Lett 15:104–410. https://doi.org/10.1142/S0218625X08011524

    Article  Google Scholar 

  4. Veprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476:1–29. https://doi.org/10.1016/j.tsf.2004.10.053

    Article  CAS  Google Scholar 

  5. Cheng YH, Browne T, Heckerman B, Meletis EI (2010) Mechanical and tribological properties of nanocomposite TiSiN coatings. Surf Coatings Technol 204:2123–2129. https://doi.org/10.1016/j.surfcoat.2009.11.034

    Article  CAS  Google Scholar 

  6. Hasegawa H, Kimura A, Suzuki T (2000) Microhardness and structural analysis of (Ti, Al)N, (Ti, Cr)N, (Ti, Zr)N and (Ti, V)N films. J Vac Sci Technol A Vacuum, Surfaces, Film 18:1038. https://doi.org/10.1116/1.582296

    Article  CAS  Google Scholar 

  7. Lin YW, Huang GH, Yu GP (2010) Microstructure and corrosion resistance of nanocrystalline TiZrN filmson AISI 304 stainless steel substrate. J Vac Sci Technol A 25:774–778. https://doi.org/10.1116/1.3305963

    Article  CAS  Google Scholar 

  8. Pogrebnjak AD, Bagdasaryan AA, Yakushchenko IV, Beresnev VM (2014) The structure and properties of high-entropy alloys and nitride coatings based on them. Russ Chem Rev 83:1027–1061. https://doi.org/10.1070/rcr4407

    Article  Google Scholar 

  9. Maksakova OV, Simoẽs S, Pogrebnjak AD et al (2019) Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties. J Alloys Compd 776(2019):679–690. https://doi.org/10.1016/j.jallcom.2018.10.342

    Article  CAS  Google Scholar 

  10. Maksakova OV, Webster RF, Tilley RD et al (2020) Nanoscale architecture of (CrN/ZrN)/(Cr/Zr) nanocomposite coatings: Microstructure, composition, mechanical properties and first-principles calculations. J Alloys Compd 831:154808. https://doi.org/10.1016/j.jallcom.2020.154808

    Article  CAS  Google Scholar 

  11. Kurbatov D, Opanasyuk A, Khlyap H (2009) Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation. Phys Status Solidi Appl Mater Sci 206:1549–1557. https://doi.org/10.1002/pssa.200824472

    Article  CAS  Google Scholar 

  12. Voznyi A, Kosyak V, Opanasyuk A et al (2016) Structural and electrical properties of SnS2 thin films. Mater Chem Phys 173:52–61. https://doi.org/10.1016/j.matchemphys.2016.01.036

    Article  CAS  Google Scholar 

  13. Zukowski P, Koltunowicz TN, Bondariev V et al (2016) Determining the percolation threshold for (FeCoZr)x(CaF2)(100–x) nanocomposites produced by pure argon ion-beam sputtering. J Alloys Compd 683:62–66. https://doi.org/10.1016/j.jallcom.2016.05.070

    Article  CAS  Google Scholar 

  14. Bagdasaryan AA, Pshyk AV, Coy LE et al (2018a) Structural and mechanical characterization of (TiZrNbHfTa)N/WN multilayered nitride coatings. Mater Lett 229:364–367. https://doi.org/10.1016/j.matlet.2018.07.048

    Article  CAS  Google Scholar 

  15. Bagdasaryan AA, Pshyk AV, Coy LE et al (2018b) A new type of (TiZrNbTaHf)N/MoN nanocomposite coating: microstructure and properties depending on energy of incident ions. Compos Part B Eng 146:132–144. https://doi.org/10.1016/j.compositesb.2018.04.015

    Article  CAS  Google Scholar 

  16. Pogrebnyak AD, Shpak AP, Azarenkov NA, Beresnev VM (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys Usp 52:29–54. https://doi.org/10.3367/ufne.0179.200901b.0035

    Article  Google Scholar 

  17. Barshilia HC, Deepthi B, Rajam KS (2010) Transition metal nitride-based nanolayered multilayer coatings and nanocomposite coatings as novel superhard materials. In: Zhang S (ed) Nanostructured thin films and coatings: mechanical properties. CRC Press, Boca Raton, рр 427–481. https://doi.org/10.1201/b11764

  18. Jehn HA (2000) Multicomponent and multiphase hard coatings for tribological applications. Surf Coat Technol 131:433–440. https://doi.org/10.1016/S0257-8972(00)00783-0

    Article  CAS  Google Scholar 

  19. Khadem M, Penkov OV, Yang HK, Kim DE (2017) Tribology of multilayer coatings for wear reduction: a review. Friction 5:248–262. https://doi.org/10.1007/s40544-017-0181-7

    Article  CAS  Google Scholar 

  20. Maksakova OV, Pogrebnjak OD, Beresnev VM (2018) Features of investigations of multilayer nitride coatings based on Cr and Zr. Prog Phys Met 19:25–48. https://doi.org/10.15407/ufm.19.01.025

    Article  CAS  Google Scholar 

  21. Sadki ES, Barber ZH, Lloyd SJ et al (2000) Effects of interlayer coupling on the irreversibility lines of NbN/AlN superconducting multilayers. Phys Rev Lett 85:4168–4171. https://doi.org/10.1103/PhysRevLett.85.4168

    Article  CAS  Google Scholar 

  22. Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42:11743–11756. https://doi.org/10.1016/j.ceramint.2016.04.095

    Article  CAS  Google Scholar 

  23. Pogrebnjak A, Smyrnova K, Bondar O (2019) Nanocomposite multilayer binary nitride coatings based on transition and refractory metals: structure and properties. Coatings 9:155. https://doi.org/10.3390/coatings9030155

    Article  CAS  Google Scholar 

  24. Smallman RE, Ngan AHW (2014) Surfaces Grain Boundaries and Interfaces. Modern Physical Metallurgy. Elsevier, Amsterdam, pp 415–442

    Google Scholar 

  25. Makhlouf ASH (2014) Handbook of smart coatings for materials protection. Elsevier Inc, Amsterdam

    Google Scholar 

  26. Hansen N (2004) Hall-petch relation and boundary strengthening. Scr Mater 51:801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  27. Wan H, Shen Y, Jin X et al (2012) Effects of coherency stress and vacancy sources/sinks on interdiffusion across coherent multilayer interfaces - Part II: interface sharpening and intermixing rate. Acta Mater 60:2539–2553. https://doi.org/10.1016/j.actamat.2012.01.022

    Article  CAS  Google Scholar 

  28. Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94. https://doi.org/10.1016/j.compositesb.2018.01.004

    Article  CAS  Google Scholar 

  29. Kravchenko YO, Coy LE, Peplińska B et al (2018) Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): influence of composition of the alternating layer on their structural and mechanical properties. J Alloys Compd 767:483–495. https://doi.org/10.1016/j.jallcom.2018.07.090

    Article  CAS  Google Scholar 

  30. Stueber M, Holleck H, Leiste H et al (2009) Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J Alloys Compd 483:321–333. https://doi.org/10.1016/j.jallcom.2008.08.133

    Article  CAS  Google Scholar 

  31. Boing D, de Oliveira AJ, Schroeter RB (2018) Limiting conditions for application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) coated cemented carbide grades in the turning of hardened steels. Wear 416:54–61. https://doi.org/10.1016/j.wear.2018.10.007

    Article  CAS  Google Scholar 

  32. Wang T, Zhang G, Jiang B (2015) Microstructure, mechanical and tribological properties of TiMoN/Si3N4 nano-multilayer films deposited by magnetron sputtering. Appl Surf Sci 326:162–167. https://doi.org/10.1016/j.apsusc.2014.11.125

    Article  CAS  Google Scholar 

  33. Chang YY, Chang H, Jhao LJ, Chuang CC (2018) Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation. Surf Coat Technol 350:1071–1079. https://doi.org/10.1016/j.surfcoat.2018.02.040

    Article  CAS  Google Scholar 

  34. Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318. https://doi.org/10.1016/j.matlet.2017.09.121

    Article  CAS  Google Scholar 

  35. Ward L, Pilkington A, Dowey S (2017) Studies on the effect of arc current mode and substrate rotation configuration on the structure and corrosion behavior of PVD TiN coatings. Coatings 7:50. https://doi.org/10.3390/coatings7040050

    Article  CAS  Google Scholar 

  36. Gilewicz A, Warcholinski B (2015) Deposition and characterisation of Mo2N/CrN multilayer coatings prepared by cathodic arc evaporation. Surf Coat Technol 279:126–133. https://doi.org/10.1016/j.surfcoat.2015.08.042

    Article  CAS  Google Scholar 

  37. Pogrebnjak AD, Kong CH, Webster RF et al (2019) Antibacterial effect of au implantation in ductile nanocomposite multilayer (TiAlSiY)N/CrN coatings. ACS Appl Mater Interfaces 11:48540–48550. https://doi.org/10.1021/acsami.9b16328

    Article  CAS  Google Scholar 

  38. Pogrebnjak A, Maksakova O, Kozak C et al (2016) Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Prz Elektrotechniczny 2016:180–183. https://doi.org/10.15199/48.2016.08.49

    Article  Google Scholar 

  39. Noyan IC, Cohen JB (1987) Residual Stress Measurement by Diffraction and Interpretation. Springer Verlag, New York

    Google Scholar 

  40. Shirley DA (1972) High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  41. Engberg D (2015) Atom probe tomography of TiSiN thin films. Linköping University Electronic Press, Linköping

    Book  Google Scholar 

  42. Pshyk AV, YaO K, Coy LE et al (2018) Microstructure, phase composition and mechanical properties of novel nanocomosite (TiAlSiY)N and nano-scale multilayer (TiAlSiY)N/MoN functional coatings. Surf Coat Technol 350:376–390. https://doi.org/10.1016/j.surfcoat.2018.07.010

    Article  CAS  Google Scholar 

  43. Gates-Rector SD, Blanton TN (2019) The powder diffraction file: a quality materials characterization database. Powder Diffr 34:352–360. https://doi.org/10.1017/S0885715619000812

  44. Hoerling A, Sjölén J, Willmann H et al (2008) Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films. Thin Solid Films 516:6421–6431. https://doi.org/10.1016/j.tsf.2007.12.133

    Article  CAS  Google Scholar 

  45. Martin PM (2010) Handbook of deposition technologies for films and coatings. Elsevier Inc, Amsterdam

    Google Scholar 

  46. Zukowski P, Kołtunowicz T, Partyka J et al (2009) Electrical properties of nanostructures (CoFeZr)x+(Al2O3)1–x with use of alternating current. Vacuum 83:S275–S279. https://doi.org/10.1016/j.vacuum.2009.01.081

    Article  CAS  Google Scholar 

  47. Kołtunowicz TN, Zhukowski P, Fedotov AK et al (2013) Influence of matrix type on negative capacitance effect in nanogranular composite films FeCoZr-insulator. Elektron ir Elektrotechnika 19:37–40. https://doi.org/10.5755/j01.eee.19.4.1693

    Article  Google Scholar 

  48. Xu Y, Li L, Cai X, Chu PK (2007) Hard nanocomposite Ti-Si-N films prepared by DC reactive magnetron sputtering using Ti-Si mosaic target. Surf Coat Technol 201:6824–6827. https://doi.org/10.1016/j.surfcoat.2006.09.078

    Article  CAS  Google Scholar 

  49. Vepřek S, Reiprich S (1995) A concept for the design of novel superhard coatings. Thin Solid Films 268:64–71. https://doi.org/10.1016/0040-6090(95)06695-0

    Article  Google Scholar 

  50. Lin YW, Huang JH, Cheng WJ, Yu GP (2018) Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel. Surf Coat Technol 350:745–754. https://doi.org/10.1016/j.surfcoat.2018.04.077

    Article  CAS  Google Scholar 

  51. Vaz F, Rebouta L, Goudeau P et al (2000) Characterization of Ti1-xSixNy nanocomposite films. Surf Coat Technol 133–134:307–313. https://doi.org/10.1016/S0257-8972(00)00947-6

    Article  Google Scholar 

  52. Bhowmick S, Kale AN, Jayaram V, Biswas SK (2003) Contact damage in TiN coatings on steel. Thin Solid Films 436:250–258. https://doi.org/10.1016/S0040-6090(03)00598-4

    Article  CAS  Google Scholar 

  53. Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11. https://doi.org/10.1016/S0043-1648(00)00488-9

    Article  CAS  Google Scholar 

  54. Komarov FF, Konstantinov VM, Kovalchuk AV et al (2016) The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and TiAlN coatings. Wear 352:92–101. https://doi.org/10.1016/j.wear.2016.02.007

    Article  CAS  Google Scholar 

  55. Musil J, Jirout M (2007) Toughness of hard nanostructured ceramic thin films. Surf Coat Technol 201:5148–5152. https://doi.org/10.1016/j.surfcoat.2006.07.020

    Article  CAS  Google Scholar 

  56. Ou YX, Lin J, Tong S et al (2016) Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surf Coat Technol 293:21–27. https://doi.org/10.1016/j.surfcoat.2015.10.009

    Article  CAS  Google Scholar 

  57. Zhang S, Wang HL, Ong SE et al (2007) Hard yet tough nanocomposite coatings - present status and future trends. Plasma Process Polym 4:219–228. https://doi.org/10.1002/ppap.200600179

    Article  CAS  Google Scholar 

  58. Kravchenko Y, Maksakova O, Drodziel P, Loboda V (2016) Effect of thermal annealing and deposition conditions on the structure and mechanical properties of a multilayer nitride coating based on Ta. High Temp Mater Process 20:85–92. https://doi.org/10.1615/HighTempMatProc.2016017252

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the state budget programs of Ukraine, Grants No. 0118U003579 and No. 0119U100787. Furthermore, the project was financed in the framework of the project Lublin University of Technology regional Excellence imitative funded by Polish Ministry of Science and High Education (contract /030/RD/2018,2019).

Author information

Authors and Affiliations

Authors

Contributions

OVM helped in writing, reviewing and editing, SZ and SVP helped in data curation, PK helped in conceptualization, YOK and PB helped in data acquisition, investigation, ADP helped in supervision, VMB and BOM helped in resources, NAM and AIK helped in formal analysis.

Corresponding author

Correspondence to O. V. Maksakova.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksakova, O.V., Zhanyssov, S., Plotnikov, S.V. et al. Microstructure and tribomechanical properties of multilayer TiZrN/TiSiN composite coatings with nanoscale architecture by cathodic-arc evaporation. J Mater Sci 56, 5067–5081 (2021). https://doi.org/10.1007/s10853-020-05606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05606-2

Navigation