Skip to main content
Log in

Temperature-dependent Raman investigation and photoluminescence of graphene quantum dots with and without nitrogen-doping

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The study of the temperature dependence of Raman spectrum of graphene quantum dots is important for further understanding of the fine structure and properties of the material such as atomic bonds, thermal expansion, and thermal conductivity. In this work, we present new results on the temperature dependence of the frequency of G peak in the Raman spectra of bare GQDs and nitrogen-doped graphene quantum dots (N-GQDs), respectively. The nature of these GQDs is investigated using high-resolution transmission electron microscopy together with Raman, absorption, and photoluminescence spectra. We monitored a shift in G peak frequency toward lower frequencies with the temperature ranging from 81 to 663 K. In addition, a slight decrease in G peak intensity and an increase in D peak intensity have been observed, which is especially clear for Raman spectra of N-GQD sample. From the linear relationship of G peak frequency with temperature, we determine for the first time the value of the temperature coefficient χ of the G mode. Values of − 0.0222 ± 0.001 cm−1 K−1 for GQDs, and − 0.0243 ± 0.0013 cm−1 K−1 for N-GQDs were deduced. These results show a clear heat expansion in the graphene lattice, although small in size, when sample temperature is increased from 81 to 663 K. Our result is important to further understand physical effects induced by anharmonic phonons in QGDs and should be taken to account when designing efficient nanoelectronic devices employing GQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320(5874):356–358

    Article  CAS  Google Scholar 

  2. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  Google Scholar 

  3. Yan X, Cui X, Li L-s (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132:5944–5945

    Article  CAS  Google Scholar 

  4. Ge J, Lan M, Zhou B et al (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596. https://doi.org/10.1038/ncomms5596

    Article  CAS  Google Scholar 

  5. Ye R, Xiang C, Lin J et al (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943. https://doi.org/10.1038/ncomms3943

    Article  CAS  Google Scholar 

  6. Son DI, Kwon BW, Park DH et al (2012) Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7(7):465–471. https://doi.org/10.1038/nnano.2012.71

    Article  CAS  Google Scholar 

  7. Yang S, Sun J, Li X et al (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2(23):8660–8667. https://doi.org/10.1039/c4ta00860j

    Article  CAS  Google Scholar 

  8. Sun J, Yang S, Wang Z et al (2015) Ultra-high quantum yield of graphene quantum dots: aromatic-nitrogen doping and photoluminescence mechanism. Part Part Syst Char 32(4):434–440. https://doi.org/10.1002/ppsc.201400189

    Article  CAS  Google Scholar 

  9. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mater Today Chem 10:221–258. https://doi.org/10.1016/j.mtchem.2018.09.007

    Article  CAS  Google Scholar 

  10. Khan F, Kim JH (2019) Emission-wavelength-dependent photoluminescence decay lifetime of N-functionalized graphene quantum dot downconverters: Impact on conversion efficiency of Cu(In, Ga)Se2 solar cells. Sci Rep 9(1):10803. https://doi.org/10.1038/s41598-019-47068-w

    Article  CAS  Google Scholar 

  11. Konstantatos G, Badioli M, Gaudreau L et al (2012) Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 7(6):363–368. https://doi.org/10.1038/nnano.2012.60

    Article  CAS  Google Scholar 

  12. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) AVersatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375. https://doi.org/10.1002/anie

    Article  CAS  Google Scholar 

  13. Liu JJ, Zhang XL, Cong ZX, Chen ZT, Yang HH, Chen GN (2013) Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 5(5):1810–1815. https://doi.org/10.1039/c3nr33794d

    Article  CAS  Google Scholar 

  14. Das R, Parveen S, Bora A, Giri PK (2020) Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots. Carbon 160:273–286. https://doi.org/10.1016/j.carbon.2020.01.030

    Article  CAS  Google Scholar 

  15. Li C, Yue Y (2014) Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology 25(43):435703. https://doi.org/10.1088/0957-4484/25/43/435703

    Article  CAS  Google Scholar 

  16. Li C, Zhang J, Xiong Q, Lorenzini G, Yue Y (2018) The pH effect on thermal response of fluorescence spectroscopy of graphene quantum dots for nanoscale thermal characterization. J Eng Thermophys 27(3):345–356. https://doi.org/10.1134/s1810232818030104

    Article  CAS  Google Scholar 

  17. Sehrawat P, Abid A, Islam SS (2019) An ultrafast quantum thermometer from graphene quantum dots. Nanoscale Adv 1(5):1772–1783. https://doi.org/10.1039/c8na00361k

    Article  CAS  Google Scholar 

  18. Apostolov AT, Apostolova IN, Wesselinowa JM (2012) Temperature and layer number dependence of the G and 2D phonon energy and damping in graphene. J Phys Condens Matter 24(23):235401. https://doi.org/10.1088/0953-8984/24/23/235401

    Article  CAS  Google Scholar 

  19. Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK (2019) Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 11(35):16571–16581. https://doi.org/10.1039/c9nr05345j

    Article  CAS  Google Scholar 

  20. Qu D, Sun Z, Zheng M et al (2015) Three colors emission from S, N Co-doped graphene quantum dots for visible light H2production and bioimaging. Adv Opt Mater 3(3):360–367. https://doi.org/10.1002/adom.201400549

    Article  CAS  Google Scholar 

  21. Lin J, Guo L, Huang Q, Jia Y, Li K, Lai X, Chen X (2011) Anharmonic phonon effects in Raman spectra of unsupported vertical graphene sheets. Phys Rev B 83(12):125430–125437. https://doi.org/10.1103/PhysRevB.83.125430

    Article  CAS  Google Scholar 

  22. Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phonon anharmonicities in graphite and graphene. Phys Rev Lett 99(17):176802. https://doi.org/10.1103/PhysRevLett.99.176802

    Article  CAS  Google Scholar 

  23. Wright AR, Zhang C (2010) Dynamic conductivity of graphene with electron-LO-phonon interaction. Phys Rev B 81(16):165413. https://doi.org/10.1103/PhysRevB.81.165413

    Article  CAS  Google Scholar 

  24. Zhou H, Qiu C, Yu F et al (2011) Raman scattering of monolayer graphene: the temperature and oxygen doping effects. J Phys D: Appl Phys 44(18):185404. https://doi.org/10.1088/0022-3727/44/18/185404

    Article  CAS  Google Scholar 

  25. Zhou H-q, Qiu C-y, Yang H-c et al (2011) Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls. Chem Phys Lett 501(4–6):475–479. https://doi.org/10.1016/j.cplett.2010.11.082

    Article  CAS  Google Scholar 

  26. Wang L, Wang Y, Xu T et al (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357. https://doi.org/10.1038/ncomms6357

    Article  CAS  Google Scholar 

  27. Laverdant J, Marcillac WDd, Barthou C et al (2011) Experimental determination of the fluorescence quantum yield of semiconductor nanocrystals. Materials 4(12):1182–1193. https://doi.org/10.3390/ma4071182

    Article  CAS  Google Scholar 

  28. Fan T, Zeng W, Tang W et al (2015) Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res Lett 10:55. https://doi.org/10.1186/s11671-015-0783-9

    Article  CAS  Google Scholar 

  29. Lin L, Rong M, Lu S et al (2015) A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7(5):1872–1878. https://doi.org/10.1039/c4nr06365a

    Article  CAS  Google Scholar 

  30. Wu J, Wang P, Wang F, Fang Y (2018) Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced raman spectroscopy. Nanomaterials 8(10):864–873. https://doi.org/10.3390/nano8100864

    Article  CAS  Google Scholar 

  31. Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P (2013) Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7(7):6278–6286

    Article  CAS  Google Scholar 

  32. Luk CM, Tsang MK, Chan CF, Lau SP (2014) Two-Photon Fluorescence in N-Doped Graphene Quantum Dots. Int J Chem Mole Nucl Mater Metall Eng 8(12):1387–1390

    Google Scholar 

  33. Dey T, Mukherjee S, Ghorai A, Das S, Ray SK (2018) Surface state selective tunable emission of graphene quantum dots exhibiting novel thermal quenching characteristics. Carbon 140:394–403. https://doi.org/10.1016/j.carbon.2018.09.015

    Article  CAS  Google Scholar 

  34. Tang L, Ji R, Li X, Teng KS, Lau SP (2013) Energy-level structure of nitrogen-doped graphene quantum dots. J Mater Chem C 1(32):4908–4915. https://doi.org/10.1039/c3tc30877d

    Article  CAS  Google Scholar 

  35. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636. https://doi.org/10.1002/smll.201402648

    Article  CAS  Google Scholar 

  36. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  37. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  38. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano lett 7(9):2645–2649

    Article  CAS  Google Scholar 

  39. Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2011) Raman spectroscopy in graphene related systems. Wiley-VCHVerlag GmbH & Co, Singapore

    Book  Google Scholar 

  40. Beams R, Gustavo Cancado L, Novotny L (2015) Raman characterization of defects and dopants in graphene. J Phys Condens Matter 27(8):083002. https://doi.org/10.1088/0953-8984/27/8/083002

    Article  CAS  Google Scholar 

  41. Thang PN, Hung LX, Thuan DN et al (2019) Surface-enhanced Raman scattering from semiconductor and graphene quantum dots coupled to metallic-film-on-nanosphere substrates. Appl Phys A 125(5):337. https://doi.org/10.1007/s00339-019-2641-6

    Article  CAS  Google Scholar 

  42. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  43. Rajender G, Giri PK (2016) Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. J Mater Chem C 4(46):10852–10865. https://doi.org/10.1039/c6tc03469a

    Article  CAS  Google Scholar 

  44. Wang G, Guo Q, Chen D et al (2018) Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. ACS Appl Mater Interfaces 10(6):5750–5759. https://doi.org/10.1021/acsami.7b16002

    Article  CAS  Google Scholar 

  45. Zhu J, Tang Y, Wang G et al (2017) Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl Mater Interfaces 9(16):14470–14477. https://doi.org/10.1021/acsami.6b11525

    Article  CAS  Google Scholar 

  46. Bharathi G, Nataraj D, Premkumar S et al (2017) Graphene quantum dot solid sheets: strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Sci Rep 7(1):10850–10867. https://doi.org/10.1038/s41598-017-10534-4

    Article  CAS  Google Scholar 

  47. Kellici S, Acord J, Power NP, Morgan DJ, Coppo P, Heil T, Saha B (2017) Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. RSC Adv 7(24):14716–14720. https://doi.org/10.1039/c7ra00127d

    Article  CAS  Google Scholar 

  48. Froehlicher G, Se B (2015) Raman spectroscopy of electrochemically-gated graphene transistors: geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering. Phys Rev B 91:1–15

    Article  Google Scholar 

  49. Vecera P, Eigler S, Kolesnik-Gray M et al (2017) Degree of functionalisation dependence of individual Raman intensities in covalent graphene derivatives. Sci Rep 7:45165. https://doi.org/10.1038/srep45165

    Article  CAS  Google Scholar 

  50. Mohanty N, Moore D, Xu Z, Sreeprasad TS, Nagaraja A, Rodriguez AA, Berry V (2012) Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nat Commun 3:844. https://doi.org/10.1038/ncomms1834

    Article  CAS  Google Scholar 

  51. Chiashi S, Murakami Y, Miyauchi Y, Maruyama S (2008) Temperature dependence of raman scattering from single-walled carbon nanotubes: undefined radial breathing mode peaks at high temperatures. Jpn J Appl Phys 47(4):2010–2015. https://doi.org/10.1143/jjap.47.2010

    Article  CAS  Google Scholar 

  52. Chen S, Moore AL, Cai W et al (2011) Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5(1):321–328. https://doi.org/10.1021/nn102915x

    Article  CAS  Google Scholar 

  53. Tian S, Yang Y, Liu Z, Wang C, Pan R, Gu C, Li J (2016) Temperature-dependent Raman investigation on suspended graphene: contribution from thermal expansion coefficient mismatch between graphene and substrate. Carbon 104:27–32. https://doi.org/10.1016/j.carbon.2016.03.046

    Article  CAS  Google Scholar 

  54. Berciaud S, Han MY, Mak KF, Brus LE, Kim P, Heinz TF (2010) Electron and optical phonon temperatures in electrically biased graphene. Phys Rev Lett 104(22):227401. https://doi.org/10.1103/PhysRevLett.104.227401

    Article  CAS  Google Scholar 

  55. Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47(5):1822–1873. https://doi.org/10.1039/c6cs00915h

    Article  CAS  Google Scholar 

  56. Eckmann A, Felten A, Verzhbitskiy I, Davey R, Casiraghi C (2013) Raman study on defective graphene: effect of the excitation energy, type, and amount of defects. Phys Rev B 88(3):035426. https://doi.org/10.1103/PhysRevB.88.035426

    Article  CAS  Google Scholar 

  57. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  58. Boas CRSV, Focassio B, Marinho E Jr, Larrude DG, Salvadori MC, Rocha LC, dos Santos DJ (2019) Characterization of nitrogen doped graphene bilayers synthesized by fast, low temperature microwave plasma-enhanced chemical vapour deposition. Sci Rep 9:13715. https://doi.org/10.1038/s41598-019-49900-9

    Article  CAS  Google Scholar 

  59. Tan P, Deng Y, Zhao Q, Cheng W (1999) The intrinsic temperature effect of the Raman spectra of graphite. Appl Phys Lett 74:1818–1820

    Article  CAS  Google Scholar 

  60. Tan P, Deng Y, Zhao Q (1998) Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Phys Rev B 58(9):5435–5439. https://doi.org/10.1103/PhysRevB.58.5435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.03-2018.03. The author J.L. thanks the support by the French Region Auvergne Rhône-Alpes, project SCUSI n 1700936601. Pascal Philippe Bargiela from Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON, UMR5236) is thanked for XPS analysis. Finally, the authors thank Duy Tan University and the National Key Laboratory for Electronic Materials and Devices of Institute of Materials Science for the use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Thu Nga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 9,028kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thang, P.N., Hung, L.X., Thuan, D.N. et al. Temperature-dependent Raman investigation and photoluminescence of graphene quantum dots with and without nitrogen-doping. J Mater Sci 56, 4979–4990 (2021). https://doi.org/10.1007/s10853-020-05578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05578-3

Navigation