Skip to main content

Advertisement

Log in

Influence of alloying on the tensile strength and electrical resistivity of silver nanowire: copper composites macroscopic wires

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composite powders made up of 1 vol. %Ag nanowires (NW) dispersed in Cu were prepared and consolidated into cylinders by spark plasma sintering. One cylinder was sintered at only 400 °C resulting in a nanocomposite sample with no dissolution of the Ag NW into the Cu matrix. The second cylinder was sintered at 600 °C and the Ag NW are dissolved forming Ag/Cu alloy NW. The cylinders served as starting materials for room temperature wire-drawing, enabling the preparation of wires of decreasing diameters. The microstructure of the cylinders and the wires was investigated by electron microscopy and associated techniques. The tensile strength and electrical resistivity were measured at 293 K and 77 K. The nanocomposite and alloy wires show similar UTS values (1100 MPa at 77 K), but alloying, although spatially limited, provoked a significant increase in electrical resistivity (0.56 µΩ cm at 77 K) compared to the nanocomposite wires (0.49 µΩ cm at 77 K).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Misra A, Thilly L (2010) Structural metals at extremes. MRS Bull 35:965–972. https://doi.org/10.1017/S0883769400100016

    Article  Google Scholar 

  2. Arnaud C, Lecouturier F, Mesguich D, Ferreira N, Chevallier G, Estournès C, Weibel A, Laurent C (2016) High strength – high conductivity double-walled carbon nanotube - copper composite wires. Carbon 96:212–215. https://doi.org/10.1016/j.carbon.2015.09.061

    Article  CAS  Google Scholar 

  3. Mesguich D, Arnaud C, Lecouturier F, Ferreira N, Chevallier G, Estournès C, Weibel A, Josse C, Laurent C (2017) High strength-high conductivity carbon nanotube - copper wires with bimodal grain size distribution by spark plasma sintering and wire-drawing. Scripta Mater 137:78–82. https://doi.org/10.1016/j.scriptamat.2017.05.008

    Article  CAS  Google Scholar 

  4. Tardieu S, Mesguich D, Lonjon A, Lecouturier F, Ferreira N, Chevallier G, Proietti A, Estournès C, Laurent C (2019) Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity. Mater Sci Eng A 761:138048. https://doi.org/10.1016/j.msea.2019.138048

    Article  CAS  Google Scholar 

  5. Sakai Y, Schneider-Muntau HJ (1997) Ultra-high strength, high conductivity Cu-Ag alloy wires. Acta Mater 45:1017–1023. https://doi.org/10.1016/S1359-6454(96)00248-0

    Article  CAS  Google Scholar 

  6. Han K, Embury JD, Sims JR, Campbell LJ, Schneider-Muntau HJ, Pantsyrnyi VI, Shikov A, Nikulin A, Vorobieva, (1999) A The fabrication, properties and microstructure of Cu–Ag and Cu–Nb composite conductors. Mater Sci Eng A 267:99–114. https://doi.org/10.1016/S0921-5093(99)00025-8

    Article  Google Scholar 

  7. Han K, Baca A, Coe H, Embury J, Kihara K, Lesch B, Li L, Schillig J, Sims J, Van Sciver S, Schneider-Muntau HJ (2000) Material issues in the 100 T non-destructive magnet. IEEE Trans Appl Supercond 10:1277–1280. https://doi.org/10.1109/77.828468

    Article  Google Scholar 

  8. Zuo X, Han K, Zhao C, Niu R, Wang E (2014) Microstructure and properties of nanostructured Cu 28 wt%Ag microcomposite deformed after solidifying under a high magnetic field. Mater Sci Eng A 619:319–327. https://doi.org/10.1016/j.msea.2014.09.070

    Article  CAS  Google Scholar 

  9. Arnaud C, Lecouturier F, Mesguich D, Ferreira N, Chevallier G, Estournès C, Weibel A, Peigney A, Laurent C (2016) High strength – high conductivity nanostructured copper wires prepared by spark plasma sintering and room-temperature severe plastic deformation. Mater Sci Eng A 649:209–213. https://doi.org/10.1016/j.msea.2015.09.122

    Article  CAS  Google Scholar 

  10. Orru R, Licheri R, Locci AM, Cincotti A, Cao GC (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63:127–287. https://doi.org/10.1016/j.mser.2008.09.003

    Article  CAS  Google Scholar 

  11. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018

    Article  CAS  Google Scholar 

  12. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817. https://doi.org/10.1016/j.actamat.2012.10.038

    Article  CAS  Google Scholar 

  13. Raabe D, Choi PP, Li Y, Kostka A, Sauvage X, Lecouturier F, Hono K, Kirchheim R, Pippan R, Embury D (2010) Metallic composites processed via extreme deformation: toward the limits of strength in bulk materials. Mater Res Bull 35:982–991. https://doi.org/10.1557/mrs2010.703

    Article  CAS  Google Scholar 

  14. Hanazaki K, Shigeiri N, Tsuji N (2010) Change in microstructures and mechanical properties during deep wire drawing of copper. Mater Sci Eng A 527:5699–5707. https://doi.org/10.1016/j.msea.2010.05.057

    Article  CAS  Google Scholar 

  15. Laurent C, Rousset A (1995) Metal-oxide ceramic matrix nanocomposites. Key Eng Mater 108–110:405–406. https://doi.org/10.4028/www.scientific.net/KEM.108-110.405

    Article  Google Scholar 

  16. Okamoto H, Schlesinger ME, Mueller EM (2016) ASM handbook vol. 3, alloy phase diagrams. ASM International, USA , pp 2–28

    Book  Google Scholar 

  17. Divinski S, Lohmann M, Herzig C (2001) Ag grain boundary diffusion and segregation in Cu: measurements in the types B and C diffusion regimes. Acta Mater 49:249–261. https://doi.org/10.1016/S1359-6454(00)00304-9

    Article  CAS  Google Scholar 

  18. Butrymowicz DB (1977) Diffusion rate data mass transport phenomena for copper systems. Inst. for Materials Research, National Bureau of Standards, Washington DC

    Google Scholar 

  19. Lonjon A, Caffrey I, Carponcin D, Dantras E, Lacabanne C (2013) High electrically conductive composites of Polyamide 11 filled with silver nanowires: nanocomposites processing, mechanical and electrical analysis. J Non-Cryst Solids 376:199–204. https://doi.org/10.1016/j.jnoncrysol.2013.05.020

    Article  CAS  Google Scholar 

  20. Zhang ZH, Wang FC, Wang L, Li SK (2008) Ultrafine-grained copper prepared by spark plasma sintering process. Mater Sci Eng A 476:201–205. https://doi.org/10.1016/j.msea.2007.04.107

    Article  CAS  Google Scholar 

  21. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426. https://doi.org/10.1126/science.1092905

    Article  CAS  Google Scholar 

  22. Zhang BB, Tao NR, Lu K (2017) A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins. Scripta Mater 129:39–43. https://doi.org/10.1016/j.scriptamat.2016.10.022

    Article  CAS  Google Scholar 

  23. Kauffmann A, Freudenberger J, Klauß H, Klemm V, Schillinger W, Sarma VS, Schultz L (2013) Properties of cryo-drawn copper with severely twinned microstructure. Mater Sci Eng A 588:132–141. https://doi.org/10.1016/j.msea.2013.09.022

    Article  CAS  Google Scholar 

  24. Davis JR (2001) ASM specialty handbook. ASM International, Copper and copper alloys, p 4

    Google Scholar 

  25. Simon NJ (1992) Properties of copper and copper alloys at cryogenic temperatures. U.S. Dept. of Commerce, National Institute of Standards and Technology, Washington, D.C.

    Book  Google Scholar 

Download references

Acknowledgements

Electron microscopy was performed at “Centre de microcaractérisation Raimond Castaing—UMS 3623" (Toulouse). The authors thank Dr. C. Josse (Castaing), Dr. A. Weibel (CIRIMAT) and Dr. G. Rikken (LNCMI) for discussions.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Laurent.

Ethics declarations

Conflict of interest

None

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tardieu, S., Mesguich, D., Lonjon, A. et al. Influence of alloying on the tensile strength and electrical resistivity of silver nanowire: copper composites macroscopic wires. J Mater Sci 56, 4884–4895 (2021). https://doi.org/10.1007/s10853-020-05556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05556-9

Navigation