Skip to main content
Log in

Multiscale composite nanofiber membranes with asymmetric wetability: preparation, characterization, and applications in wound dressings

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of regular wound dressings commonly brings about excessively retained wound exudate between the dressing and the wound, which is detrimental to the healing. This study manages to control the biofluid around wounds effectively. To begin with, silk fibroin (SF) is extracted from silk. Next, SF and PCL are mixed and electrospun into multiscale hydrophobic nanofibers on the surface of the dopamine (PDA)-treated hydrophilic PVA nanofibrous membranes, thereby forming asymmetric wetability composite membranes with one-way water conduction. Moreover, PVA nanofibrous membranes are immersed in a PDA solution with an attempt to have a greater surface chemical activity and thus demonstrate an 85% greater wicking height and an air permeability being 90 mm/s. A 20% (w/v) SF solution and an 8% (w/v) PCL solution with a feeding rate being 1:3 provide the resulting SF/PCL nanofibrous membranes with greater hydrophobic properties, namely a water contact angle being 112°. In addition, the ultimate asymmetric wetability composite membranes exhibit an excellent wetting gradient, which benefits the directional transmission of moisture. The moisture management test results indicate that when the electrospinning time for PVA and SF/PCL layers is separately 30 min and 5 min, the resulting composite membranes attain the effect of one-way water conduction. In vitro analysis confirmed that the composite membrane produced were non-toxic. This unique wound dressing with one-way water conduction has a giant potential to serve as new type wound dressings for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203

    Article  CAS  Google Scholar 

  2. Liu Y, Zhang Q, Zhou N et al (2020) Study on a novel poly (vinyl alcohol)/graphene oxide-citicoline sodium-lanthanum wound dressing: biocompatibility, bioactivity, antimicrobial activity, and wound healing effect. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125059

    Article  Google Scholar 

  3. Bi H, Feng T, Li B, Han Y (2020) In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polym Basel 12:839. https://doi.org/10.3390/polym12040839

    Article  CAS  Google Scholar 

  4. Mogoşan GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136. https://doi.org/10.1016/j.ijpharm.2013.12.015

    Article  CAS  Google Scholar 

  5. Li S, Li L, Guo C, Qin H, Yu X (2017) A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. Int J Biol Macromol 104:969–978

    Article  CAS  Google Scholar 

  6. Abou-Okeil A, Sheta AM, Amr A, Ali MA (2012) Wound dressing based on nonwoven viscose fabrics. Carbohydr Polym 90:658–666

    Article  CAS  Google Scholar 

  7. Schuren J, Becker A, Sibbald RG (2010) A liquid film-forming acrylate for peri-wound protection: a systematic review and meta-analysis (3m cavilon no-sting barrier film). Int Wound J 2:230–238

    Article  Google Scholar 

  8. Cutting KF, White RJ (2002) Maceration of the skin and wound bed. 1: its nature and causes. J Wound Care 11:275–278

    Article  Google Scholar 

  9. Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58:185–206

    Article  Google Scholar 

  10. Wang H-Y, Wei Z-G, Zhang YQ (2020) Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials. Int J Biol Macromol 143:594–601

    Article  CAS  Google Scholar 

  11. Ribeiro M, Ferraz MP, Monteiro FJ, Fernandes MH, Beppu MM, Mantione D, Sardon H (2017) Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomed Nanotechnol 13:231–239

    Article  CAS  Google Scholar 

  12. Heard AJ, Socrate S, Burke KA, Norwitz ER, Kaplan DL, House MD (2012) Silk-based Injectable biomaterial as an alternative to cervical cerclage. Reprod Sci 20:929–936

    Article  Google Scholar 

  13. Sweeney IR, Miraftab M, Collyer G (2012) A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int Wound J 9:601–612

    Article  Google Scholar 

  14. Li T-T, Ling L, Lin M-C, Peng H-K, Ren H-T, Lou C-W, Lin Q, Lin J-H (2020) Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J Mater Sci 55:6352–6374. https://doi.org/10.1007/s10853-020-04467-z

    Article  CAS  Google Scholar 

  15. Elliott WH, Bonani W, Maniglio D, Motta A, Tan W, Migliaresi C (2015) Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking. ACS Appl Mater Inter 7:12099–12108

    Article  CAS  Google Scholar 

  16. Shefa AA, Taz M, Lee SY, Lee B-T (2019) Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydr Polym 208:168–179

    Article  CAS  Google Scholar 

  17. Niu C, Li X, Wang Y, Liu X, Shi J, Wang X (2019) Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Adv 9:41066–41073

    Article  Google Scholar 

  18. Liang A, Zhang M, Luo H, Niu L, Feng Y, Li M (2020) Porous poly(Hexamethylene Biguanide) hydrochloride loaded silk fibroin sponges with antibacterial function. Materials 13:285

    Article  CAS  Google Scholar 

  19. Sang Y, Li M, Liu J et al (2018) Biomimetic silk scaffolds with an amorphous structure for soft tissue engineering. ACS Appl Mater Interfaces 10:9290–9300

    Article  CAS  Google Scholar 

  20. Yang X, Fan L, Ma L et al (2017) Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater Des 119:76–84

    Article  CAS  Google Scholar 

  21. Arthe R, Arivuoli D, Ravi V (2019) Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.010

    Article  Google Scholar 

  22. Shalumon KT, Binulal NS, Selvamurugan N et al (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869

    Article  CAS  Google Scholar 

  23. Li T-T, Ling L, Lin M-C, Jiang Q, Lin Q, Lou C-W, Lin J-H (2019) Effects of ultrasonic treatment and current density on the properties of hydroxyapatite coating via electrodeposition and its in vitro biomineralization behavior. Mat Sci Eng C Mater 105:110062. https://doi.org/10.1016/j.msec.2019.110062

    Article  CAS  Google Scholar 

  24. Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S, Khorasani AC (2020) Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. Int J Biol Macromol 155:119–130

    Article  CAS  Google Scholar 

  25. Dolynchuk O, Kolesov I, Jehnichen D, Reuter U, Radusch H-J, Sommer J-U (2017) Reversible shape-memory effect in cross-linked linear poly(ε-caprolactone) under stress and stress-free conditions. Macromolecule 50:3841–3854

    Article  CAS  Google Scholar 

  26. Zarekhalili Z, Bahrami SH, Ranjbar-Mohammadi M, Milan PB (2017) Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. Int J Biol Macromol 94:679–690

    Article  CAS  Google Scholar 

  27. Scarpa E, Janeczek AA, Hailes A et al (2018) Polymersome nanoparticles for delivery of Wnt-activating small molecules. Nanomed Nanotechnol 14:1267–1277

    Article  CAS  Google Scholar 

  28. Srinivasa Reddy C, Reddy Venugopal J, Ramakrishna S, Zussman E (2013) Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. J Biomed Mater Res A 102:3713–3725

    Article  Google Scholar 

  29. Nguyen TH, Huynh CK, Nguyen DH, Lee B-T, Vo VT, Le TH (2017) Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. J Biomat Sci Polym E 28:864–878

    Article  CAS  Google Scholar 

  30. Marziyeh R-M, Shahram R, Bahrami SH, Joghataei MT, Moayer F (2016) Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mat Sci Eng C Mater 69:1183–1191

    Article  Google Scholar 

  31. Nazeer MA, Yilgor E, Yilgor I (2019) Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications. Polymer 168:86–94

    Article  CAS  Google Scholar 

  32. Li L, Li H, Qian Y et al (2011) Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49:223–232

    Article  CAS  Google Scholar 

  33. Wang H, Ding J, Dai L, Wang X, Lin T (2010) Directional water-transfer through fabrics induced by asymmetric wettability. J Mater Chem 20:7938–7840

    Article  CAS  Google Scholar 

  34. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8:5996–5999

    Article  CAS  Google Scholar 

  35. Zhang Y, Li T-T, Ren H-T, Sun F, Lin Q, Lin J-H, Lou C-W (2020) Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning. RSC Adv 10:3529–3538. https://doi.org/10.1039/c9ra06022g

    Article  CAS  Google Scholar 

  36. Shi L, Liu X, Wang W, Jiang L, Wang S (2018) A self-pumping dressing for draining excessive biofluid around wounds. Adv Mater. https://doi.org/10.1002/adma.201804187

    Article  Google Scholar 

  37. Antisdel JL, West-Denning JL, Sindwani R (2009) Effect of microporous polysaccharide hemospheres (MPH) on bleeding after endoscopic sinus surgery. Otolaryng Head Neck 141:353–357

    Article  Google Scholar 

  38. Zuo J-H, Cheng P, Chen X-F, Yan X, Guo Y-J, Lang W-Z (2018) Ultrahigh flux of polydopamine-coated PVDF membranes quenched in airvia thermally induced phase separation for oil/water emulsion separation. Sep Purif Technol 192:348–359

    Article  CAS  Google Scholar 

  39. Zainab G, Wang X, Yu J, Zhai Y, Babar AA, Xiao K, Ding B (2016) Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithiumion batteries. Mater Chem Phys 182:308–314

    Article  CAS  Google Scholar 

  40. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A 65:188–195

    Article  Google Scholar 

  41. Li L, Puhl S, Meinel L, Germershaus O (2014) Silk fibroin layer-by-layer microcapsules for localized gene delivery. Biomaterials 35:7929–7939

    Article  CAS  Google Scholar 

  42. Sivaraman B, Latour RA (2010) The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials 31:832–839

    Article  CAS  Google Scholar 

  43. Sun F, Li T-T, Zhang X (2020) In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126873

    Article  Google Scholar 

  44. Supuren G, Oglakcioglu N, Ozdil N, Marmarali A (2011) Moisture management and thermal absorptivity properties of double-face knitted fabrics. Text Res J 81:1320–1330

    Article  CAS  Google Scholar 

  45. Hu J, Li Y, Yeung K-W, Wong ASW, Xu W (2005) Moisture management tester: a method to characterize fabric liquid moisture management properties. Text Res J 75:57–62

    Article  CAS  Google Scholar 

  46. Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  CAS  Google Scholar 

  47. Yeo IS, Oh JE, Jeong L, Lee TS, Lee SJ, Park WH, Min B-M (2008) Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromol 9:1106–1116

    Article  CAS  Google Scholar 

  48. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ (2004) Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 25:5137–5146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Natural Science Foundation of Tianjin (18JCQNJC03400), National Natural Science Foundation of China (Grant No. 51503145 and 11702187), the Natural Science Foundation of Fujian (2018J01504, 2018J01505) and the Program for Innovative Research Team in University of Tianjin (TD13-5043).

Author information

Authors and Affiliations

Authors

Contributions

In this study, the concepts and designs for the experiment are supervised by Prof. Jia-Horng Lin and Prof. Ching-Wen Lou. Experiment and data processing are conducted by Yanqin Zhong, Dr. Hao-Kai Peng and Dr. Hongli Chen. Text composition and results analysis are performed by Dr. Ting-Ting Li, Yanqin Zhong and Dr. Hai-Tao Ren. The experimental result is examined by Dr. Ting-Ting Li, Prof.Ching-Wen Lou and Dr. Hao-Kai Peng.

Corresponding authors

Correspondence to Jia-Horng Lin or Ching-Wen Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TT., Zhong, Y., Peng, HK. et al. Multiscale composite nanofiber membranes with asymmetric wetability: preparation, characterization, and applications in wound dressings. J Mater Sci 56, 4407–4419 (2021). https://doi.org/10.1007/s10853-020-05531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05531-4

Navigation