Skip to main content
Log in

Starting monomer of graphdiyne–hexakis[(trimethylsilyl)ethynyl]benzene: a superior nonlinear absorption material

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphdiyne (GDY) is an emerging carbon allotrope consisting of sp- and sp2-hybrid carbon atoms. The sp-hybrid carbon–carbon triple bond structure with strong d–π interaction has endowed GDY special nonlinear absorption (NLA) properties, which is different from graphene. As a starting monomer for synthesizing GDY, hexakis[(trimethylsilyl)ethynyl]benzene (HEB-TMS) also owns the carbon–carbon triple bond (sp-) and the benzene ring (sp2-) structures (similar to GDY), which stimulates us to explore the NLA properties of HEB-TMS. In this work, two-dimensional (2D) nanosheets of HEB-TMS are successfully prepared using a liquid-phase exfoliation method with the thicknesses of 3.49  ~  4.47 nm. And the broadband NLA properties are researched using an open-aperture Z-scan method (from ultraviolet to infrared waveband). The results demonstrate that HEB-TMS owns excellent NLA characteristics in visible light waveband. The excellent optical limiting properties of HEB-TMS provide the possibility of application in the protection of human eyes and precision optical component in visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  4. Kaciulis S (2012) Spectroscopy of carbon: from diamond to nitride films. Surf Interface Anal 44(8):1155–1161

    CAS  Google Scholar 

  5. Elguero J, Foces-Foces C, Llamas-Saiz AL (1992) Another possible carbon allotrope. Bulletin des Sociétés Chimiques Belges 101(9):795–799

    CAS  Google Scholar 

  6. Haley MM, Brand SC, Pak JJ (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem, Int Ed Engl 36(8):836–838

    CAS  Google Scholar 

  7. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46(19):3256–3258

    CAS  Google Scholar 

  8. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43(8):2572–2586

    CAS  Google Scholar 

  9. Chen Z, Molina-Jirón C, Klyatskaya S, Klappenberger F, Ruben M (2017) 1D and 2D graphdiynes: recent advances on the synthesis at interfaces and potential nanotechnological applications. Ann Phys 529(11):1700056

    Google Scholar 

  10. Ivanovskii A (2013) Graphynes and graphdyines. Prog Solid State Chem 41(1–2):1–19

    CAS  Google Scholar 

  11. Li Y, He J, Shen H (2020) Journey from small‐molecule diyne structures to 2D graphdiyne: synthetic strategies. Chemi–A Eur J 26(54):12310–12321

    CAS  Google Scholar 

  12. Kong Y, Li J, Zeng S et al (2020) Bridging the gap between reality and ideality of graphdiyne: the advances of synthetic methodology. Chem 6(8):1933–1951

    CAS  Google Scholar 

  13. Sedona F, Fakhrabadi M, Carlotto S et al (2020) On-surface synthesis of extended linear graphyne molecular wires by protecting the alkynyl group. Phys Chem Chem Phys 22(21):12180–12186

    CAS  Google Scholar 

  14. Zhou W, Shen H, Zeng Y et al (2020) Controllable synthesis of graphdiyne nanoribbons. Angew Chemie-Int Edition 59(12):4908–4913

    CAS  Google Scholar 

  15. Xie C, Wang N, Li X et al (2020) Research on the preparation of graphdiyne and its derivatives. Chem–A Eur J 26(3):569–583

    CAS  Google Scholar 

  16. Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5(4):2593–2600

    CAS  Google Scholar 

  17. Qian X, Ning Z, Li Y et al (2012) Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans 41(3):730–733

    CAS  Google Scholar 

  18. Hu M, Pan Y, Luo K, He J, Yu D, Xu B (2015) Three dimensional graphdiyne polymers with tunable band gaps. Carbon 91:518–526

    CAS  Google Scholar 

  19. Zhou J, Xie Z, Liu R et al (2019) Synthesis of ultrathin graphdiyne film using a surface template. ACS Appl Mater Interfaces 11(3):2632–2637

    CAS  Google Scholar 

  20. Zhao Y, Guo P, Li X, Jin Z (2019) Ultrafast photonics application of graphdiyne in optical communication region. Carbon 149:336–341

    CAS  Google Scholar 

  21. Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47(43):11843–11845

    CAS  Google Scholar 

  22. Krishnamoorthy K, Thangavel S, Veetil JC, Raju N, Venugopal G, Kim SJ (2016) Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors. Int J Hydrog Energy 41(3):1672–1678

    CAS  Google Scholar 

  23. Nazirfakhr M, Zaminpayma E (2018) Graphdiyne nanoribbon based diodes: a theoretical study on rectifying behavior of nitrogen doped graphdiyne-graphdiyne heterojunction. Appl Surf Sci 458:210–215

    CAS  Google Scholar 

  24. Guo S, Yan H, Wu F et al (2017) Graphdiyne as electrode material: tuning electronic state and surface chemistry for improved electrode reactivity. Anal Chem 89(23):13008–13015

    CAS  Google Scholar 

  25. Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116(9):5951–5956

    CAS  Google Scholar 

  26. Huang C, Zhang S, Liu H, Li Y, Cui G, Li Y (2015) Graphdiyne for high capacity and long-life lithium storage. Nano Energy 11:481–489

    CAS  Google Scholar 

  27. Kuang C, Tang G, Jiu T et al (2015) Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett 15(4):2756–2762

    CAS  Google Scholar 

  28. Wang K, Wang N, He J, Yang Z, Shen X, Huang C (2017a) Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. ACS Appl Mater Interfaces 9(46):40604–40613

    CAS  Google Scholar 

  29. Li J, Jiu T, Chen S et al (2018) Graphdiyne as a host active material for perovskite solar cell application. Nano Lett 18(11):6941–6947

    CAS  Google Scholar 

  30. Li J, Xu J, Xie Z et al (2018) Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv Mater 30(20):1800548

    Google Scholar 

  31. Wang K, Wang N, He J, Yang Z, Shen X, Huang C (2017b) Graphdiyne nanowalls as anode for lithium–ion batteries and capacitors exhibit superior cyclic stability. Electrochim Acta 253:506–516

    CAS  Google Scholar 

  32. Li J, Zhong L, Tong L et al (2019) Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv Func Mater 29(43):1905423–1905432

    CAS  Google Scholar 

  33. Chen X, Gao P, Guo L, Zhang S (2015) Graphdiyne as a promising material for detecting amino acids. Sci Rep 5:16720

    CAS  Google Scholar 

  34. Wu L, Gao J, Lu X, Huang C, Chen J (2020) Graphdiyne: a new promising member of 2D all-carbon nanomaterial as robust electrochemical enzyme biosensor platform. Carbon 156:568–575

    CAS  Google Scholar 

  35. Pei Y (2012) Mechanical properties of graphdiyne sheet. Phys B 407(22):4436–4439

    CAS  Google Scholar 

  36. Chen Y, Li J, Wang F et al (2019) Chemical modification: toward solubility and processability of graphdiyne. Nano Energy 64:103932–103939

    CAS  Google Scholar 

  37. Xu J, Li J, Yang Q, Xiong Y, Chen C (2017) In-situ synthesis of MnO2@ graphdiyne oxides nanocomposite with enhanced performance of supercapacitors. Electrochim Acta 251:672–680

    CAS  Google Scholar 

  38. Zheng T, Gao Y, Deng X et al (2018) Comparisons between graphene oxide and graphdiyne oxide in physicochemistry biology and cytotoxicity. ACS Appl Mater Interfaces 10(39):32946–32954

    CAS  Google Scholar 

  39. Wang N, Li X, Tu Z et al (2018) Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew Chem 130(15):4032–4037

    Google Scholar 

  40. Kosar N, Shehzadi K, Ayub K, Mahmood T (2020) Theoretical study on novel superalkali doped graphdiyne complexes: unique approach for the enhancement of electronic and nonlinear optical response. J Mol Gr Model 97:107573–107582

    CAS  Google Scholar 

  41. Vazhappilly T, Ghanty TK (2020) The effect of doping on adsorption of Xe and Kr on graphyne and graphdiyne. Mater Today Commun 22:100738–100745

    CAS  Google Scholar 

  42. Feng Z, Tang Y, Chen W, Wei D, Ma Y, Dai X (2020) O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Mol Catal 483:110705–110714

    CAS  Google Scholar 

  43. Wu L, Dong Y, Zhao J et al (2019) Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv Mater 31(14):1807981

    Google Scholar 

  44. Yang Q, Zhang X, Yang Z et al (2019) Broadband γ-graphyne saturable absorber for Q-switched solid-state laser. Appl Phys Express 12(12):122006

    CAS  Google Scholar 

  45. Zhang F, Liu G, Yuan J et al (2020) 2D graphdiyne: an excellent ultraviolet nonlinear absorption material. Nanoscale 12(11):6243–6249

    CAS  Google Scholar 

  46. Li X (2019) Graphdiyne: a promising nonlinear optical material modulated by tetrahedral alkali-metal nitrides. J Mol Liq 277:641–645

    CAS  Google Scholar 

  47. Yu H, Xue Y, Li Y (2019) Graphdiyne and its assembly architectures: synthesis, functionalization, and applications. Adv Mater 31(42):1803101

    CAS  Google Scholar 

  48. Zhou J, Gao X, Liu R et al (2015) Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J Am Chem Soc 137(24):7596–7599

    CAS  Google Scholar 

  49. Xue Y, Guo Y, Yi Y et al (2016) Self-catalyzed growth of Cu@ graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 30:858–866

    CAS  Google Scholar 

  50. Gao X, Li J, Du R et al (2017) Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv Mater 29(9):1605308

    Google Scholar 

  51. Matsuoka R, Sakamoto R, Hoshiko K et al (2017) Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J Am Chem Soc 139(8):3145–3152

    CAS  Google Scholar 

  52. Liu Z, Wang Y, Zhang X, Xu Y, Chen Y, Tian J (2009) Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett 94(2):021902

    Google Scholar 

  53. Guo Z, Zhang H, Lu S et al (2015) From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv Func Mater 25(45):6996–7002

    CAS  Google Scholar 

  54. Liaros N, Aloukos P, Kolokithas-Ntoukas A et al (2013) Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J Phys Chem C 117(13):6842–6850

    CAS  Google Scholar 

  55. Wang F, Rozhin A, Scardaci V et al (2008) Wideband-tuneable, nanotube mode-locked, fibre laser. Nat Nanotechnol 3(12):738–742

    CAS  Google Scholar 

  56. Keller U, Weingarten KJ, Kartner FX et al (1996) Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Sel Top Quantum Electron 2(3):435–453

    CAS  Google Scholar 

  57. Bao Q, Zhang H, Wang Y et al (2009) Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Func Mater 19(19):3077–3083

    CAS  Google Scholar 

  58. Zhang F, Han S, Liu Y, Wang Z, Xu X (2015) Dependence of the saturable absorption of graphene upon excitation photon energy. Appl Phys Lett 106(9):091102

    Google Scholar 

  59. Gan Y, Feng M, Zhan H (2014) Enhanced optical limiting effects of graphene materials in polyimide. Appl Phys Lett 104(17):171105

    Google Scholar 

  60. Zhang F, Liu G, Wang Z et al (2019) Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale 11(36):17058–17064

    CAS  Google Scholar 

  61. Feng M, Zhan H, Chen Y (2010) Nonlinear optical and optical limiting properties of graphene families. Appl Phys Lett 96(3):033107

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11704227, 61505109, 11704226) and Youth Innovative Talents Attracting and Cultivating Plan of Colleges and Universities in Shandong Province No 21.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Zhang or Fei Xing.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Liu, G., Wang, Z. et al. Starting monomer of graphdiyne–hexakis[(trimethylsilyl)ethynyl]benzene: a superior nonlinear absorption material. J Mater Sci 56, 3653–3662 (2021). https://doi.org/10.1007/s10853-020-05476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05476-8

Navigation