Skip to main content
Log in

High-flux oil–water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@Cu(OH)2 nanowire membrane

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High flux superwetting material has reverse wettability to oil or water phase, which plays an important part in oil–water separation and is one of the current research hotspots. Herein, we reported a ZIF-67@Cu(OH)2 nanowire array-coated metal mesh prepared using self-assembly and chemical oxidation method. These freshly prepared copper meshes with micro-/nanosecondary rough structure exhibit excellent underwater superoleophobicity and superhydrophilicity. Thus, the as-prepared mesh membrane has an excellent separation capability and can be used for oil–water separation. It shows extremely high efficiency oil–water separation function (99%), excellent cycling ability and high permeation flux (23,854 L m−2 h−1) in several typical oil–water separation processes. The mesh membrane also shows excellent underwater superoleophobicity in different pH values conditions. Besides, the as-prepared mesh membrane shows excellent durability and stability. Consequently, this work provides an economical and effective method for modification on metal substrate to prepare a underwater superoleophobicity/superhydrophilicity material to realize efficient separation of oil–water mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhang L, An Y (2018) The government capacity on industrial pollution management in Shanxi province: a response impulse analysis. J Environ Manage 223:1037–1046

    Article  Google Scholar 

  2. Yim UH, Kim M, Ha SY, Kim SH, Shim WJ (2012) Oil spill environmental forensics: the hebei spirit oil spill case. Environ Sci Technol 46:6431–6437

    Article  CAS  Google Scholar 

  3. Liu Z, Callies U (2020) A probabilistic model of decision making regarding the use of chemical dispersants to combat oil spills in the German bight. Water Res 169:115196. https://doi.org/10.1016/j.watres.2019.115196

    Article  CAS  Google Scholar 

  4. Zhang T, Li Z, Lu Y, Liu Y, Yang D, Li Q, Qiu F (2019) Recent progress and future prospects of oil-absorbing materials. Chin J Chem Eng 27:1282–1295

    Article  CAS  Google Scholar 

  5. Xu X, Dong F, Yang X, Liu H, Guo L, Qian Y, Wang A, Wang S, Luo J (2019) Preparation and characterization of cellulose grafted with epoxidized soybean oil aerogels for oil-absorbing materials. J Agric Food Chem 67:637–643

    Article  CAS  Google Scholar 

  6. Pham VH, Dickerson JH (2014) Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl Mater Interfaces 6:14181–14188

    Article  CAS  Google Scholar 

  7. Zhang H, Shen Y, Li M, Zhu G, Feng H, Li J (2019) Egg shell powders-coated membrane for surfactant-stabilized crude oil-in-water emulsions efficient separation. ACS Sustain Chem Eng 7:10880–10887

    Article  CAS  Google Scholar 

  8. Wang Y, Zhu Y, Yang C, Liu J, Jiang W, Liang B (2018) Facile two-step strategy for the construction of a mechanically stable three-dimensional superhydrophobic structure for continuous oil-water separation. ACS Appl Mater Interfaces 10:24149–24156

    Article  CAS  Google Scholar 

  9. Wang N, Deng Z (2019) synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation. Mater Res Bull 115:19–26

    Article  CAS  Google Scholar 

  10. Qiu S, Li Y, Li G, Zhang Z, Li Y, Wu T (2019) Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustain Chem Eng 7:5560–5567

    Article  CAS  Google Scholar 

  11. Latthe SS, Sutar RS, Shinde TB, Pawar SB, Khot TM, Bhosale AK, Sadasivuni KK, Xing R, Mao L, Liu S (2019) Superhydrophobic leaf mesh decorated with SiO2 nanoparticle–polystyrene nanocomposite for oil–water separation. ACS Appl Nano Mater 2:799–805

    Article  CAS  Google Scholar 

  12. Wang R, Zhao X, Jia N, Cheng L, Liu L, Gao C (2020) Superwetting oil/water separation membrane constructed from In situ assembled metal-phenolic networks and metal-organic frameworks. ACS Appl Mater Interfaces 12:10000–10008

    Article  CAS  Google Scholar 

  13. Tie L, Li J, Liu M, Guo Z, Liang Y, Liu W (2018) Facile fabrication of superhydrophobic and underwater superoleophobic coatings. ACS Appl Nano Mater 1:4894–4899

    Article  CAS  Google Scholar 

  14. Zhang C, Li P, Cao B (2016) Fabrication of superhydrophobic–superoleophilic fabrics by an etching and dip-coating two-step method for oil–water separation. Ind Eng Chem Res 55:5030–5035

    Article  CAS  Google Scholar 

  15. Wu F, Pickett K, Panchal A, Liu M, Lvov Y (2019) Superhydrophobic polyurethane foam coated with polysiloxane-modified clay nanotubes for efficient and recyclable oil absorption. ACS Appl Mater Interfaces 11:25445–25456

    Article  CAS  Google Scholar 

  16. Wang X, Yu P, Zhang K, Wu M, Wu Q, Liu J, Yang J, Zhang J (2019) Superhydrophobic/superoleophilic cotton for efficient oil–water separation based on the combined octadecanoyl chain bonding and polymer grafting via surface-initiated ATRP. ACS Appl Polymer Mater 1:2875–2882

    Article  CAS  Google Scholar 

  17. Su X, Li H, Lai X, Zhang L, Liao X, Wang J, Chen Z, He J, Zeng X (2018) Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation. ACS Appl Mater Interfaces 10:4213–4221

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang K, Yao W, Zhang C, Han Z, Ren L (2016) A facile electrodeposition process for the fabrication of superhydrophobic and superoleophilic copper mesh for efficient oil–water separation. Ind Eng Chem Res 55:2704–2712

    Article  CAS  Google Scholar 

  19. Li Y, Shang X, Zhang B (2018) One-step fabrication of the pure-silica zeolite beta coating on stainless steel mesh for efficient oil/water separation. Ind Eng Chem Res 57:17409–17416

    Article  CAS  Google Scholar 

  20. Tan L, Han N, Qian Y, Zhang H, Gao H, Zhang L, Zhang X (2018) Superhydrophilic and underwater superoleophobic poly (acrylonitrile-co-methyl acrylate) membrane for highly efficient separation of oil-in-water emulsions. J Membr Sci 564:712–721

    Article  CAS  Google Scholar 

  21. Zhou X, Yu S, Wang J, Zang J, Lv Z (2019) Superhydrophilic anti-corrosive and superhydrophobic durable TiO2/Ti mesh for oil/water separation. J Taiwan Inst Chem Eng 105:124–133

    Article  CAS  Google Scholar 

  22. Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S (2016) Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chem Eng J 301:249–256

    Article  CAS  Google Scholar 

  23. Tang L, Zeng Z, Wang G, Shen L, Zhu L, Zhang Y, Xue Q (2019) Study of oil dewetting ability of superhydrophilic and underwater superoleophobic surfaces from Air to water for high-effective self-cleaning surface designing. ACS Appl Mater Interfaces 11:18865–18875

    Article  CAS  Google Scholar 

  24. Oh S, Ki S, Ryu S, Shin MC, Lee J, Lee C, Nam Y (2019) Performance analysis of gravity-driven oil-water separation using membranes with special wettability. Langmuir 35:7769–7782

    Article  CAS  Google Scholar 

  25. Li X, Shan H, Zhang W, Li B (2020) 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation. Sep Purif Technol 237:116324. https://doi.org/10.1016/j.seppur.2019.116324

    Article  CAS  Google Scholar 

  26. Ji J, He H, Chen C, Jiang W, Raza A, Zhang T, Yuan S (2018) Biomimetic hierarchical TiO2@CuO nanowire arrays-coated copper meshes with superwetting and self-cleaning properties for efficient oil/water separation. ACS Sustain Chem Eng 7:2569–2577

    Article  Google Scholar 

  27. Cao J, Su Y, Liu Y, Guan J, He M, Zhang R, Jiang Z (2018) Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. J Membr Sci 566:268–277

    Article  CAS  Google Scholar 

  28. Du J, Zhang C, Pu H, Li Y, Jin S, Tan L, Zhou C, Dong L (2019) HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation. Coll Surf A 573:222–229

    Article  CAS  Google Scholar 

  29. Nasruddin ZA, Yulia F, Buhori A, Muhadzib N, Ghiyats M, Saha BB (2020) Synthesis and characterization of a novel microporous lanthanide based metal-organic framework (MOF) using napthalenedicarboxylate acid. J Mater Res Technol 9:7409–7417

    Article  CAS  Google Scholar 

  30. Li Q, Deng W, Li C, Sun Q, Huang F, Zhao Y, Li S (2018) High-flux oil/water separation with interfacial capillary effect in switchable superwetting Cu(OH)2@ZIF-8 nanowire membranes. ACS Appl Mater Interfaces 10:40265–40273

    Article  CAS  Google Scholar 

  31. Zhang M, Guo B, Feng Y, Xie C, Han X, Kong X, Xu B, Zhang Z (2019) Amphipathic pentiptycene-based water-resistant Cu-MOF for efficient oil/water separation. Inorg Chem 58:5384–5387

    Article  CAS  Google Scholar 

  32. Wu C, Liu Q, Chen R, Liu J, Zhang H, Li R, Takahashi K, Liu P, Wang J (2017) Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance. ACS Appl Mater Interfaces 9:11106–11115

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhang N, Zhou S, Lv X, Yang C, Chen W, Hu Y, Jiang W (2019) Facile preparation of ZIF-67 coated melamine sponge for efficient oil/water separation. Ind Eng Chem Res 58:17380–17388

    Article  CAS  Google Scholar 

  34. Zhang X, Zhao Y, Mu S, Jiang C, Song M, Fang Q, Xue M, Qiu S, Chen B (2018) UiO-66-coated mesh membrane with underwater superoleophobicity for high-efficiency oil-water separation. ACS Appl Mater Interfaces 10:17301–17308

    Article  CAS  Google Scholar 

  35. Ma L, He J, Wang J, Zhou Y, Zhao Y, Li Y, Liu X, Peng L, Qu M (2019) Functionalized superwettable fabric with switchable wettability for efficient oily wastewater purification, in situ chemical reaction system separation, and photocatalysis degradation. ACS Appl Mater Interfaces 11:43751–43765

    Article  CAS  Google Scholar 

  36. Qu M, Ma L, Zhou Y, Zhao Y, Wang J, Zhang Y, Zhu X, Liu X, He J (2018) Durable and recyclable superhydrophilic–superoleophobic materials for efficient oil/water separation and water-soluble dyes removal. ACS Appl Nano Mater 1:5197–5209

    Article  CAS  Google Scholar 

  37. Yan T, Zhang T, Zhao G, Zhang C, Li C, Jiao F (2019) Magnetic textile with pH-responsive wettability for controllable oil/water separation. Coll Surf A 575:155–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant no. 21473132), the Youth Innovation Team of Shaanxi Universities, the Shaanxi Provincial Science and Technology Department (grant no. 2019JM-371), the Outstanding Youth Science Fund of Xi’an University of Science and Technology (grant no. 2019YQ2-09), and Huyang Scholar Program of Xi’an University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinmei He or Mengnan Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Li, J., Ma, L. et al. High-flux oil–water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@Cu(OH)2 nanowire membrane. J Mater Sci 56, 3140–3154 (2021). https://doi.org/10.1007/s10853-020-05474-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05474-w

Navigation