Skip to main content
Log in

High-performance electrocatalytic and cationic substitution in Cu2ZnSnS4 as a low-cost counter electrode for Pt-free dye-sensitized solar cells

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report the synthesis of quaternary chalcopyrite sulfide semiconductors Cu2MSnS4 (M = Zn, Ni, Co, Mn, Fe) by a hydrothermal process. The formation of kesterite structure was confirmed by XRD. XPS analysis confirmed the composition of Cu–(Zn, Ni, Co, Mn, Fe)–Sn–S. Morphologies of the hierarchical structures were characterized. Hall measurements revealed that the Zn was replaced with Ni which exhibited higher carrier density and lower resistivity. Cyclic voltammetry measurements showed peak-to-peak separation (Epp) value of Cu2NiSnS4 about 268 mV, which was smaller than that of Cu2ZnSnS4, and a higher cathodic current density (Ic) of 0.000334 mA cm−2 compared to those of Pt. This indicated that the electrocatalytic activity of Cu2NiSnS4 was better for the I/I3 redox reaction, with a long-term stability for 250 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wang Z-S, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    CAS  Google Scholar 

  2. Lee K-M, Suryanarayanan V, Ho K-C (2009) Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. J Power Sources 188:635–641

    CAS  Google Scholar 

  3. Li LL, Chang CW, Wu HH, Shiu JW, Wu PT, Diau EDW (2012) Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. J Mater Chem 22:6267–6273

    CAS  Google Scholar 

  4. Lan Z, Wu J, Lin J, Huang M (2012) Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells. J Mater Chem 22:3948–3954

    CAS  Google Scholar 

  5. Liu R, Yang W-D, Qiang L-S (2012) Enhancedefficiencyfordye-sensitizedsolarcellsusingasurface-treatedphoto-anode. J Power Sources 199:418–425

    CAS  Google Scholar 

  6. Xin X, Scheiner M, Ye M, Lin Z (2011) Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. Langmuir 27:14594

    CAS  Google Scholar 

  7. Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6234

    CAS  Google Scholar 

  8. Lin JY, Wang WY, Lin YT, Chou SW (2014) Ni3S2/Ni–P bilayer coated on polyimide as a Pt- and TCO-free flexible counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 6:3357–3364

    CAS  Google Scholar 

  9. Li GR, Wang F, Jiang QW, Gao XP, Shen PW (2010) Carbon nanotubes with titanium nitride as a low-cost counter electrode material for dye-sensitized solar cells. Angew Chem Int Ed 49:3653–3656

    CAS  Google Scholar 

  10. Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv Mater 22:1759–1762

    CAS  Google Scholar 

  11. Rao SS, Gopi CVVM, Kim SK, Son MK, Jeong MS, Savariraj AD, Kim K, Prabakar HJ (2014) Cobalt sulfide thin film as an efficient counter electrode for dye-sensitized solar cells. Electrochim Act 133:174–179

    Google Scholar 

  12. Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L (2008) Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochem Commun 10:1299–1302

    CAS  Google Scholar 

  13. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10:1555–1558

    CAS  Google Scholar 

  14. Veerappan G, Bojan K, Rhee SW (2011) Sub-micrometer-sized Graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 3:857–862

    CAS  Google Scholar 

  15. Gan YX, Jayatissa AH, Yu Z, Chen X, Li M (2020) Hydrothermal synthesis of nanomaterials, 2020, 8917013–8917016

  16. Nanthini S, Sangavi K, Gowthami L, Babu GSD (2020) Efficient and stoichiometric controlled oleic acid assisted hydrothermal synthesis of Ag incorporated Cu2ZnSnS4 chalcogenide nanoparticles. Optik 221:165342–165351

    CAS  Google Scholar 

  17. Lu S, Yang H, Li F, Wang Y, Chen S, Yang G, Liu Y, Zhang X (2018) Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye-sensitized solar cells. Sci Rep 8:8714–8711

    Google Scholar 

  18. Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C, Jobic S (2017) Substitution of Li for Cu in Cu2ZnSnS4: toward wide band gap absorbers with low cation disorder for thin film solar cells. Inorg Chem 56:2712–2721

    CAS  Google Scholar 

  19. Chagarov E, Sardashti K, Kummel AC, Lee YS, Haight R, Gershon TS (2016) Ag2ZnSn(S, Se)4: a highly promising absorber for thin film photovoltaics. J Chem Phys 144:104704–104715

    Google Scholar 

  20. Scheer R, Schock H-W (2011) Chalcogenide photovoltaics: physics, technologies, and thin film devices. Wiley, New York, p 384

    Google Scholar 

  21. Ananthoju B, Mohapatra J, Jangid MK, Bahadur D, Medhekar NV, Aslam A (2016) Cation/anion substitution in Cu2ZnSnS4 for improved photovoltaic performance. Sci Rep 6:35369–35380

    CAS  Google Scholar 

  22. Yu X, Wang D, Liu J, Luo Z, Du R, Liu LM, Zhang G, Zhang Y, Cabot A (2016) Cu2ZnSnS4 nanocrystals as highly active and stable electrocatalysts for the oxygen reduction reaction. J Phys Chem C 120:24265–24270

    CAS  Google Scholar 

  23. Mayhew JDR, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211

    Google Scholar 

  24. Wu MX, Lin X, Hagfeldt A, Ma TL (2011) Low-cost molybdenum carbide and tungsten carbide counterelectrodes for dye-sensitized solar cells. Angew Chem Int Ed 50:3520–3524

    CAS  Google Scholar 

  25. Gong F, Wang H, Xu X, Zhou G, Wang ZS (2012) In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J Am Chem Soc 134:10953–10958

    CAS  Google Scholar 

  26. Fan M-S, Chen J-H, Li C-T, Cheng K-W, Ho K-C (2014) Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells. J Mater Chem A 3(2):562–569

    Google Scholar 

  27. Azmi S, Khoumri EM, Marrakchi ME, Nohair M, Tayane S, Echcherki K (2018) Comparative study on (Cu2ZnSnS4) (CZTS) thin film using different sulfur precursor. In: International renewable and sustainable energy conference (IRSEC), pp 1–6

  28. Nan H, Han J, Yin X, Zhou Y, Yao Z, Li X, Lin H (2019) Reduced graphene oxide/CZTSxSe1−x composites as a novel hole-transport functional layer in perovskite solar cells. ChemElectroChem 6(5):1500–1507

    CAS  Google Scholar 

  29. Agasti A, Nemala SS, Mallick S, Bhargava P (2018) Stability study of co-electrodeposited CZTS counter electrode for dye sensitized solar cells. Solar Energy 176:325–333

    CAS  Google Scholar 

  30. Rudisch K, Davydova A, Platzer-Björkman C, Scragg J (2018) The effect of stoichiometry on Cu–Zn ordering kinetics in Cu2ZnSnS4 thin films. J Appl Phys 123:161558

    Google Scholar 

  31. Shin D, Saparov B, Mitzi DB (2017) Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater 7(11):1602366–1602395

    Google Scholar 

  32. Kannan AG, Manjulavalli TE, Chandrasekaran J (2016) Influence of solvent on the properties of CZTS nanoparticles. Proc Eng 141:15–22

    CAS  Google Scholar 

  33. Zhou WH, Zhou YL, Feng J, Zhang JW, Wu SX, Guo XC, Cao X (2012) Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chem Phys Lett 156:115–119

    Google Scholar 

  34. Long F, Mo S, Zeng Y, Chi S, Zou Z (2014) Synthesis of flower-like Cu2ZnSnS4 nanoflakes via a microwave-assisted solvothermal route. Int J Photoenergy 11:1–4

    Google Scholar 

  35. Xia Y, Che Z, Zhang Z, Fang X, Liang G (2014) A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles. Nanoscale Res Lett 9:208–215

    Google Scholar 

  36. Wang J, Zhang P, Song X, Gao L (2012) Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals and photocatalytic properties. RSC Adv 4:27805–27810

    Google Scholar 

  37. Sarkar S, Howli P, Ghorai U, Dasb B, Samantaa M, Sankar Das N, Chattopadhyay K (2018) Flowerlike Cu2NiSnS4 microspheres for application as electrodes of asymmetric supercapacitors endowed with high energy density. Cryst Eng Commun 20:1–30

    Google Scholar 

  38. Krishnaiah M, Bhargava P, Mallick S (2015) Low-temperature synthesis of Cu2CoSnS4 nanoparticles by thermal decomposition of metal precursors and the study of its structural, optical and electrical properties for photovoltaic applications. RSC Adv 5:96928–96933

    CAS  Google Scholar 

  39. Zhong J, Wang Q, Cai W (2015) Rapid synthesis of flower-like Cu2CoSnS4 microspheres with nanoplates using a biomolecule-assisted method. Mater Lett 150:69–72

    CAS  Google Scholar 

  40. Chen L, Deng H, Tao J, Cao H, Huang L, Sun L, Yang P, Chua J (2013) Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC Adv 5:84295–84302

    Google Scholar 

  41. Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Mehta BR (2016) A low-cost, sulfurization free approach to control optical and electronic properties of CZTS via precursor variation. Sol Energy Mater Sol Cells 157:820–830

    CAS  Google Scholar 

  42. Chen G, Wang W, Zhang J, Chen S, Huang Z (2017) Formation mechanism of secondary phases in Cu2ZnSnS4 growth under different copper content. Mater Lett 186:198–201

    Google Scholar 

  43. Bao W, Ichimura M (2015) Influence of secondary phases in kesterite-Cu2ZnSnS4 absorber material based on the first principles calculation. Int J Photoenergy 6:592079–592085

    Google Scholar 

  44. Ghediya PR, Chaudhuri TK (2015) Dark and photo-conductivity of doctor-bladed CZTS films above room temperature. J Phys D Appl Phys 48:455109–455118

    Google Scholar 

  45. Xie Y, Zhang C, Yang G, Yang J, Zhou X, Ma J (2017) Highly crystalline stannite-phase Cu2XSnS4 (X¼ Mn, Fe Co, Ni, Zn and Cd) nanoflower counter electrodes for ZnO-based dye-sensitised solar cells. J Alloy Compd 696:938–946

    CAS  Google Scholar 

  46. López-Vergara F, Galdámez A, Manríquez V, González G (2015) Crystal structure and Raman scattering characterization of Cu2Fe1−xCoxSnS4 chalcogenide compounds. Solid State Sci 49:54–60

    Google Scholar 

  47. Gurel T, Sevik C, Cagın T (2011) Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys Rev B 84:205201

    Google Scholar 

  48. Ghosh A, Biswas A, Thangavel R, Udayabhanu G (2016) Photo-electrochemical property and electronic band structure of kesterite copper chalcogenides Cu2-II-Sn-S4 (II = Fe Co, Ni) thin films. RSC Adv 6:96025–96034

    CAS  Google Scholar 

  49. Yu J, Deng H, Tao J, Chen L, Cao H, Sun L, Yang P, Chu J (2017) Synthesis of Cu2MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method. Mater Lett 191:186–188

    CAS  Google Scholar 

  50. Prabhakar RR, Loc NH, Kumar MH, Boix PP, Juan S, John RA, Batabyal SK, Wong LH (2014) Facile water based spray pyrolysis of earth abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells. ACS Appl Mater Interfaces 6:17661–17667

    CAS  Google Scholar 

  51. Benchikri M, Zaberca O, El Ouatib R, Durand B, Oftinger F, Balocchi A, Chane-Ching JY (2012) A high temperature route to the formation of highly pure quaternary chalcogenide particles. Mater Lett 68:340–343

    CAS  Google Scholar 

  52. Thangaraju D, Karthikeyan R, Prakash N, Moorthy Babu S, Hayakawa Y (2015) Growth and optical properties of Cu2ZnSnS4 decorated reduced graphene oxide nanocomposites. Dalton Trans 44:15031–15041

    CAS  Google Scholar 

  53. Qu Y, Zoppi G, Beattie NS (2016) The role of nanoparticle inks in determining the performance of solution processed Cu2ZnSn(S, Se)4 thin film solar cells. Prog Photovolt Res Appl 24:836–845

    CAS  Google Scholar 

  54. Vanalakar SA, Kamble AS, Shin SW, Mali SS, Patil VL, Kim JY, Patil PS (2015) Simplistic toxic to non-toxic hydrothermal route to synthesize Cu2ZnSnS4 nanoparticles for solar cell applications. Sol Energy 122:1146–1153

    CAS  Google Scholar 

  55. Babu GSD, Shajan XS, Alwin S, Ramasubbu V, Balerao GM (2017) Effect of reaction period on stoichiometry, phase purity, and morphology of hydrothermally synthesized Cu2NiSnS4 nanopowder. Miner Met Mater Soc 47:312–322

    Google Scholar 

  56. Miao R, He J, Sahoo S, Luo Z, Zhong W, Chen SY, Guild C, Jafari T, Dutta B, Cetegen SA, Wang M, Alpay SP, Suib SL (2016) Reduced graphene oxide supported nickel–manganese–cobalt spinel ternary oxide nanocomposites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting. ACS Catal 7:819–832

    Google Scholar 

  57. Wang W, Shenn H, Yao H, Li J (2014) Preparation and properties of Cu2FeSnS4 nanocrystals by ultrasound-assisted microwave irradiation. Mater Lett 12:183–186

    Google Scholar 

  58. Wang J, Zhang P, Song X, Gao L (2015) Sol–gel nanocasting synthesis of kesterite Cu2ZnSnS4 nanorods. RSC Adv 5:1220–1226

    CAS  Google Scholar 

  59. Shi L, Li Y, Zheng R (2015) Nanoconfined solvothermal synthesis and characterization of ultrafine Cu2NiSnS4 nanotubes. Chem Plus Chem 80:1533–1536

    CAS  Google Scholar 

  60. Maldar PS, Gaikwad MA, Mane AA, Nikam SS, Desai SP, Giri SD, Sarkar A, Moholkar AV (2017) Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Sol Energy 158:89–99

    CAS  Google Scholar 

  61. Wang S, Ma R, Wang C, Wang H (2017) Fabrication and photoelectric properties of Cu2FeSnS4(CFTS) and Cu2FeSn(S, Se)4(CFTSSe) thin films. Appl Surf Sci 422:39–45

    CAS  Google Scholar 

  62. Chen S, Gong XG, Walsh A, Wei SH (2009) Crystal and electronic band structure of Cu2ZnSnX4Cu2ZnSnX4 (X = SX = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett 94:041903–041906

    Google Scholar 

  63. Persson C (2010) Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J Appl Phys 107:053710–053718

    Google Scholar 

  64. Liu D, Han D, Huang M, Zhang X, Zhang T, Dai C, Chen S (2018) Theoretical study on the kesterite solar cells based on Cu2ZnSn(S, Se)4 and related photovoltaic semiconductors. Chin Phys B 27:018806–018818

    Google Scholar 

  65. Ramkumar SP, Miglio A, van Setten MJ, Waroquiers D, Hautier G, Rignanese G-M (2018) Insights into cation disorder and phase transitions in CZTS from a first-principles approach. Phys Rev Mater 2:085403–085410

    Google Scholar 

  66. Gong F, Xu X, Zhou G, Wang ZS (2013) Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys Chem Chem Phys 15(2):546–552

    CAS  Google Scholar 

  67. Wang Q, Moser JE, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109(31):14945–14953

    CAS  Google Scholar 

  68. Yue G (2013) Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochim Acta 92:64–70

    CAS  Google Scholar 

  69. Yan C, Sun K, Huang J, Johnston S, Liu F, Puthen Veettil B, Sun K, Pu A, Zhou F, Stride JA, Hao X, Green M (2017) Beyond 11% efficient sulfide kesterite Cu2ZnxCd1–xSnS4 solar cell: effects of cadmium alloying. ACS Energy Lett 2:930–936

    CAS  Google Scholar 

  70. Dao V, Larina LL, Jung K, Lee J, Choi H (2014) Graphene–NiO nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Nanoscale 6:477–482

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. D. Nisha or M. Navaneethan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, P., Nisha, K.D., Harish, S. et al. High-performance electrocatalytic and cationic substitution in Cu2ZnSnS4 as a low-cost counter electrode for Pt-free dye-sensitized solar cells. J Mater Sci 56, 4135–4150 (2021). https://doi.org/10.1007/s10853-020-05421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05421-9

Navigation