Skip to main content
Log in

Influence of fast neutron irradiation on the phase composition and optical properties of homogeneous SiOx and composite Si–SiOx thin films

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Layers and devices utilizing semiconductor nanocrystals have been the subjects of intensive research due to applications in opto- and microelectronic devices, solar cells, detectors, memories and in many more fields. We have shown previously that those nanocrystals in dielectric matrices undergo a substantial reformation during electron irradiation. The research of the interaction between semiconductor nanoclusters and irradiation is important for both the intentional modification of the structures and for understanding the stability of those devices under harsh, radiative conditions (e.g. space, nuclear, medical diagnosis, or similar applications). In the present research, we investigated the influence of neutron irradiation on substoichiometric silicon oxide. We investigated both homogeneous case and inhomogeneous case of matrices with silicon nanoclusters. We found that a fast neutron flux of 5.5 × 1013 neutrons/cm2 s and a fluence of 3.96 × 1017 neutrons/cm2 induce phase separation in the homogeneous films, whereas it decreases the volume fraction of the amorphous silicon phase caused by the reducing size of amorphous nanoclusters in the inhomogeneous films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pavesi L, Turan R (eds) (2010) Silicon nanocrystals fundamentals, synthesis and applications. Wiley, Germany, p 652. ISBN: 978-3-527-32160-51

  2. Greben M, Khoroshyy P, Liu X, Pi X, Valenta J (2017) Fully radiative relaxation of silicon nanocrystals in colloidal ensemble revealed by advanced treatment of decay kinetics. J Appl Phys 122:034304. https://doi.org/10.1063/1.4993584

    Article  CAS  Google Scholar 

  3. Ni Z, Zhou S, Zhao S, Peng W, Yang D, Pi X (2019) Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R 138:85–117

    Google Scholar 

  4. Conibeer G (2012) Si and other group IV quantum dot based materials for tandem solar cells. Energy Procedia 15:200–205

    CAS  Google Scholar 

  5. Schnabel M, Weiss C, Löper P, Wilshaw PR, Janz S (2015) Self-assembled silicon nanocrystal arrays for photovoltaics. Phys Stat Solidi (a) 212:1649–1661

    CAS  Google Scholar 

  6. Verrelli E, Tsoukalas D (2011) Radiation hardness of flash and nanoparticle memories. In: Stievano I (ed) Flash memories, in radiation hardness of flash and nanoparticle memories, in flash memories. InTech and references therein. ISBN: 978-953-307-272-2

  7. Gismatulin AA, Kruchinin VN, Gritsenko VA, Prosvirin IP, Yen T-J, Chin A (2019) Charge transport mechanism of high-resistive state in RRAM based on SiOx. Appl Phys Lett 114:033503

    Google Scholar 

  8. Volodin V, Gritsenko V, Gismatulin A, Chin A (2019) Silicon nanocrystals and amorphous nanoclusters in SiOx and SiNx: atomic, electronic structure, and memristor effects. In: Movahedi B (ed) Nanocrystalline materials. IntechOpen

  9. Aktag A, Yilmaz E, Mogaddam NA, Aygun G, Cantas A, Turan R (2010) Ge nanocrystals embedded in SiO2 in MOS based radiation sensors. Nucl Instr Meth B 268:3417

    CAS  Google Scholar 

  10. Nedev N, Manolov E, Nesheva D, Krezhov K, Nedev R, Curiel M, Valdez B, Mladenov A, Levi Z (2012) Metal–oxide–semiconductor structures containing silicon nanocrystals for application in radiation dosimeters. Sens Lett 10:833

    CAS  Google Scholar 

  11. Nesheva D, Nedev N, Curiel M, Dzhurkov V, Arias A, Manolov E, Mateos D, Valdez B, Bineva I, Herrera R (2015) Application of metal–oxide–semiconductor structures containing silicon nanocrystals in radiation dosimetry. Open Phys 13:63

    CAS  Google Scholar 

  12. Slav A, Lepadatu AM, Stavarache I, Dascalescu I, Maraloiu AV, Negrila C, Logofatu C, Stoica T, Teodorescu VS, Ciurea ML, Lazanu S (2019) Orthorhombic HfO2 with embedded Ge nanoparticles in nonvolatile memories used for the detection of ionizing radiation. Nanotechnology 30:445501

    Google Scholar 

  13. Shieh J-M, Lai Y-F, Ni W-X, Kuo H-C, Fang C-Y, Huang JY, Pan C-L (2007) Orthorhombic HfO2 with embedded Ge nanoparticles in nonvolatile memories used for the detection of ionizing radiation. Appl Phys Lett 90:051105

    Google Scholar 

  14. Yu Z, Aceves-Mijares M (2009) A ultraviolet-visible-near infrared photodetector using nanocrystalline Si superlattice. Appl Phys Lett 95:081101

    Google Scholar 

  15. Hossain SM, Anopchenko A, Prezioso S, Ferraioli L, Pavesi L, Pucker G, Bellutti P, Binetti S, Acciarri M (2008) Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device. J Appl Phys 104:074917

    Google Scholar 

  16. Curiel M, Nedev N, Paz J, Perez O, Valdez B, Mateos D, Arias A, Nesheva D, Manolov E, Nedev R, Dzurkov V (2019) UV Sensitivity of MOS structures with silicon nanoclusters. Sensors 19:2277

    CAS  Google Scholar 

  17. Sobolev NA (2008) In: Henini M (ed) Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics. Elsevier Inc., Academic Press chapter 13. ISBN: 978-0-08-046325-4

  18. Nesheva D, Nedev N, Curiel M, Bineva I, Valdez B and Manolov E, Silicon Oxide Films Containing Amorphous or Crystalline Silicon Nanodots for Device Applications, in Quantum Dots – A Variety of New Applications Ameenah A-A editor InTech, 2012, chapter 9, 183-206. ISBN: 978-953-51-0483-4

  19. Spieler H (1997) Introduction to radiation-resistant semiconductor devices and circuits. AIP Conf Proc 390:1–31

    Google Scholar 

  20. Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Annu Rev Mater Res 38:471–503

    CAS  Google Scholar 

  21. Liu X, Miao Y, Wu Y, Maloy SA, Stubbins JF (2017) Stability of nanoclusters in an oxide dispersion strengthened alloy under neutron irradiation. Scripta Mater 138:57–61

    CAS  Google Scholar 

  22. Awazu K, Kawazoe H (2003) Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J Appl Phys 94:6243–6262

    CAS  Google Scholar 

  23. León M, Giacomazzi L, Girard S, Richard N, Martín P, Martín-Samos L, Ibarra A, BoukenterOuerdane AY (2014) Neutron irradiation effects on the structural properties of KU1, KS-4V and I301 silica glasses. IEEE Trans Nucl Sci 61:1522–1530

    Google Scholar 

  24. Huseynov E, Garibov A, Mehdiyeva R (2016) TEM and SEM study of nano SiO2 particles exposed to influence of neutron flux. J Mater Res Technol 5:213–218

    CAS  Google Scholar 

  25. Levy Sh, Shlimak I, Dressler DH, Grinblat J, Gofer Y, Lu T, Ionov AN (2011) Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation. Nanomater Nanotechnol 1:52–57

    CAS  Google Scholar 

  26. Garibli A, Garibov AA, Huseynov EM (2019) Defect formation processes in the silicon nanoparticles under the neutron irradiation. Mod Phys Lett B 33:1950315

    CAS  Google Scholar 

  27. Nesheva D, Bineva I, Levi Z, Aneva Z, Merdzhanova T, Pivin JC (2003) Composition, structure and annealing-induced phase separation in SiOx films produced by thermal evaporation of SiO in vacuum. Vacuum 68:1

    Google Scholar 

  28. Nesheva D, Raptis C, Perakis A, Bineva I, Aneva Z, Levi Z, Alexandrova S, Hofmeister H (2002) Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films. J Appl Phys 92:4678–4683

    CAS  Google Scholar 

  29. Curiel MA, Nedev N, Nesheva D, Soares J, Haasch R, Sardela M, Valdez B, Sankaran B, Manolov E, Bineva I, Petrov I (2010) Microstructural characterization of thin SiOx films obtained by physical vapor deposition. Mat Sci Eng B 174:132–136

    CAS  Google Scholar 

  30. Bineva I (2004) Silicon nanoparticles in thermal SiOx thin films. PhD thesis, Sofia, Bulgaria

  31. Donchev V, Nesheva D, Todorova D, Germanova K, Valcheva E (2012) Characterization of Si–SiOx nanocomposite layers by comparative analysis of computer simulated and experimental infra-red transmission spectra. Thin Solid Films 520:2085

    CAS  Google Scholar 

  32. Mateos D, Arias A, Nedev N, Curiel M, Dzhurkov V, Manolov E, Nesheva D, Contreras O, Valdez B, Bineva I, Raymond O, Siqueiros JM (2013) Metal–oxide–semiconductor structures with two and three-region gate dielectric containing silicon nanocrystals: structural infrared and electrical properties. NSTI-Nanotech 2013(1):396–399

    Google Scholar 

  33. Mateos D, Curiel M, Nedev N, Nesheva D, Machorro R, Manolov E, Abundiz N, Arias A, Contreras O, Valdez B, Raymond O, Siqueiros JM (2013) TEM and spectroscopic ellipsometry studies of multilayer gate dielectrics containing crystalline or amorphous Si nanoclusters. Physica E 51:111–114

    CAS  Google Scholar 

  34. Szentmiklosi L, Parkanyi D, Sziklai-Laszlo I (2016) Upgrade of the Budapest neutron activation analysis laboratory. J Radionala Nucl Chem 309:91–99

    CAS  Google Scholar 

  35. Vincent Crist B (2000) Handbook of Monochromatic XPS spectra. Wiley, Hoboken

    Google Scholar 

  36. Ferlauto AS, Ferreira GM, Pearce JM, Wronski CW, Collins RW (2002) Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J Appl Phys 92:2424

    CAS  Google Scholar 

  37. Amans D, Callard S, Ganarie A, Joseph J, Ledoux G, Huisken F (2003) Ellipsometric study of silicon nanocrystal optical constants. J Appl Phys 93:4173

    CAS  Google Scholar 

  38. Lohner T, Szekeres A, Nikolova T, Vlaikova E, Petrik P, Huhn G, Havancsak K, Lisovskyy I, Zlobin S, Indutnyy IZ, Shepeliavyi PE (2009) Optical models for ellipsometric characterization of high temperature annealed nanostructured SiO2 films. J. Optoel Adv Mater 11:1288

    CAS  Google Scholar 

  39. Curiel M, Petrov I, Nedev N, Nesheva D, Sardela M, Murata Y, Valdez B, Manolov E, Bineva I (2010) Formation of Si nanocrystals in thein SiO2 films for memory device application. Mater Sci Forum Special vol AFM-NANOMAT 664:101–104

    Google Scholar 

  40. Evtukh A, Hartnagel H, Yilmazoglu O, Mimura H, Pavlidis D (2015) Vacuum nanoelectronic devices: novel electron sources and applications. John Wiley & Sons Ltd, Chichester, p 209

    Google Scholar 

  41. Alarcón-Salazar J, Aceves-Mijares M, Roman-López S, Falcony C (2012) Characterization and fabrication of SiOx nano-metric films, obtained by reactive sputtering. In: Proceedings 9th international conference on electrical engineering, computing science and automatic control (CCE), Mexico City, pp 1–5.

  42. Luna-López JA, Morales-Sánchez A, Aceves-Mijares M, Yu Z, Domínguez C (2009) Analysis of surface roughness and its relationship with photoluminescence properties of silicon-rich oxide films. J Vac Sci Technol, A 27:57

    Google Scholar 

  43. Kolari K, Vehmas T, Svensk O, Törmä P, Aalto T (2010) Smoothing of microfabricated silicon features by thermal annealing in reducing or inert atmospheres. Phys Scr. 2010:014017

    Google Scholar 

  44. Acosta-Alba PE, Kononchuk O, Gourdel Ch, Claverie A (2014) Surface self-diffusion of silicon during high temperature annealing. J Appl Phys 115:134903

    Google Scholar 

  45. Araki K, Takeda R, Sudo H, Izunome K, Zhaokolari X (2014) J Surf Eng Mater Adv Technol 4:249–256

    CAS  Google Scholar 

  46. Manolov E, Nedev N, Dzhurkov V, Nesheva D, Paz-Delgadillo J, Curiel-Alvarez M, Valdez-Salas B (2019) Investigation of resistive switching in SiO2 layers with Si nanocrystals. J Phys Conf Ser 1186:012022

    CAS  Google Scholar 

  47. Curiel M, Nedev N, Paz J, Perez O, Valdez B, Mateos D, Arias A, Nesheva D, Manolov E, Nedev R, Dzhurkov V (2019) UV sensitivity of MOS structures with silicon nanoclusters. Sensors 19:2277

    CAS  Google Scholar 

  48. Behrisch R (1982) Sputtering with neutrons. J Nucl Mater 108–109:73–82

    Google Scholar 

  49. Bang-jiao YE, Yang-mei FAN, Kasuga Y, Ikeda Y, Zhou X-Y, Han R-D (1999) Reduced sputtering yields induced by fast neutrons. Chin Phys Lett 16:844–846

    Google Scholar 

  50. Tsu DV, Lucovsky G, Davidson BN (1989) Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr: H (0<r<2) alloy system. Phys Rev B 40:1795

    CAS  Google Scholar 

  51. Tomozeiu N (2011) Silicon oxide (SiOx, 0<x<2): a challenging material for optoelectronics. In: Predeep P (ed) Optoelectronics—materials and techniques. InTech, Rijeka. ISBN: 978-953-307-276-0

  52. Hristova-Vasileva T, Petrik P, Nesheva D, Fogarassy Z, Lábár J, Kaschieva S, Dmitriev SN, Antonova K (2018) Influence of 20 MeV electron irradiation on the optical properties and phase composition of SiOx thin films. J Appl Phys 123:195303

    Google Scholar 

  53. Nesheva D, Nedev N, Levi Z, Brüggemann R, Manolov E, Kirilov K, Meier S (2008) Absorption and transport properties of Si rich oxide layers annealed at various temperatures. Semicond Sci Technol 23:045015

    Google Scholar 

  54. Ischenko AA, Fetisov GV, Aslalnov LA (2015) Nanosilicon: properties, synthesis, applications, methods of analysis and control. CRC Press, Taylor and Francis Group ss, Boca Raton, pp 1–3

    Google Scholar 

  55. Bineva I, Nesheva D, Šćepanović M, Grujić-Brojčin M, Popović ZV, Levi Z (2007) Dependence of photoluminescence from a-Si nanoparticles on the annealing time and exciting wavelength. J Luminescence 126:7–13

    CAS  Google Scholar 

  56. Petrik P, Lohner T, Fried M, Gyulai J, Boell U, Berger R, Lehnert W (2002) Ellipsometric study of the polysilicon/thin oxide/single-crystalline silicon structure and its change upon annealing. J Appl Phys 92:2374

    CAS  Google Scholar 

  57. Petrik P (2008) Ellipsometric models for vertically inhomogeneous composite structures. Phys Stat Solidi A 205:732

    CAS  Google Scholar 

  58. Salazar D, Soto-Molina R, Lizarraga-Medina EG, Felix MA, Radnev N, Marquez H (2016) Ellipsometric study of SiOx thin films by thermal evaporation. Open J Inorg Chem 6:175

    CAS  Google Scholar 

  59. Nesheva D, Petrik P, Hristova-Vasileva T, Fogarassy Z, Kalas B, Šćepanović M, Kaschieva S, Dmitriev SN, Antonova K (2019) Changes in composite nc-Si-SiO2 thin films caused by 20 MeV electron irradiation. Nucl Instrum Methods Phys Res Sect B 458:159–163

    CAS  Google Scholar 

  60. Xiong F, Li M-F, Malomo B, Yang L (2020) Microstrictural evolution in amorphous-nanocrystalline ZrCu alloy under neutron irradiation. Acta Mater 182:18–28

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Gmeling for performing neutron irradiation of the samples. P. Petrik is grateful for support from the OTKA K131515 project. The Bulgarian co-authors thank the European Regional Development Fund, Ministry of Economy of Bulgaria, Operational Programme “Development of the Competitiveness of the Bulgarian economy” 2007–2013, Contract No BG161PO003-1.2.04-0027-C0001, for purchasing the Bruker Vertex 70 spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Petrik.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesheva, D., Fogarassy, Z., Fabian, M. et al. Influence of fast neutron irradiation on the phase composition and optical properties of homogeneous SiOx and composite Si–SiOx thin films. J Mater Sci 56, 3197–3209 (2021). https://doi.org/10.1007/s10853-020-05338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05338-3

Navigation