Skip to main content
Log in

Polystyrene-b-poly(acrylic acid) nanospheres for the synthesis of size-controlled cobalt nanoparticles encapsulated inside hollow carbon spheres

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal particle agglomeration is known to be one of the factors responsible for the reduction in catalytic activity (even selectivity) when metal particles are supported on carbon. In this study, an approach using functional groups attached to a polymeric support was used to reduce metal agglomeration. Herein, we report on the preparation of polystyrene (PS) (d = 350 nm) and asymmetric polystyrene-b-poly(acrylic acid) (PS-b-PAA) nanospheres (8% and 12% PAA loadings; d = 274 nm and 343 nm) to make cobalt/polymer complexes. The CoxOy nanoparticles were supported on the PS and PS-b-PAA templates (5%, 10% and 15% Co loading), and then the CoxOy/template was coated with resorcinol–formaldehyde (RF). Thermal removal of the templates and annealing of the RF at 600 °C for 2 h gave the CoxOy@HCS materials. At a nominal Co loading of 5%, the PS template produced CoxOy@HCS materials that contained small Co particles (6.1 nm) while at higher Co loadings (10%, 15%) large and irregularly shaped Co nanoparticles (d > 20 nm) were formed. In contrast, PS-b-PAA gave CoxOy@HCS with small, highly dispersed Co nanoparticles (d < 10 nm) at loadings between 5 and 15%. The three polymeric nanospheres and the CoxOy/polymer and CoxOy@HCS materials were all characterized using SEM, TEM, TGA and FTIR spectroscopy. The use of functionalized polymer templates thus allows small Co particles to be easily transferred from the template to the RF to give CoxOy@HCS, even when using high-temperature (600 °C) synthesis conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Egeblad K, Rass-Hansen J, Marsden CC, Taarning E, Christensen CH (2009) Heterogeneous catalysis for production of value-added chemicals from biomass. In: Spivey JJ, Dooley KM (eds) Catalysis, vol 21. Royal Society of Chemistry, London, pp 13–50. https://doi.org/10.1039/B712664F

    Chapter  Google Scholar 

  2. Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, Reuter K, Grunwaldt J-D (2017) Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9:17–29. https://doi.org/10.1002/cctc.201600996

    Article  CAS  Google Scholar 

  3. Peres L, Axet MR, Yi D, Serp P, Soulantica K (2019) Selective hydrogenation of cinnamaldehyde by unsupported and few layer graphene supported platinum concave nanocubes exposing 110 facets stabilized by long-chain amine. Catal Today. https://doi.org/10.1016/j.cattod.2019.05.048

    Article  Google Scholar 

  4. Garces LJ, Hincapie B, Zerger R, Suib SL (2015) The effect of temperature and support on the reduction of cobalt oxide: an in-situ X-ray diffraction study. J Phys Chem C 119(2015):5484–5490. https://doi.org/10.1021/jp5124184

    Article  CAS  Google Scholar 

  5. Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch synthesis on cobalt and ruthenium metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224. https://doi.org/10.1016/0021-9517(92)90150-G

    Article  CAS  Google Scholar 

  6. Lualdi M (2012) Fischer–Tropsch synthesis over cobalt based catalysts for BTL applications. PhD thesis, Department of Chemical Engineering, Stockholm, Sweden

  7. Pomogailo AD, Dzhardimalieva GI (2014) Reduction of metal ions in polymer matrices as a condensation method of nanocomposite synthesis. In: Nanostructure materials preparation via condensation ways. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2567-8_2

  8. Phaahlamohlaka TN, Kumi DO, Dlamini MW, Jewell LL, Coville NJ (2016) Ruthenium nanoparticles encapsulated inside porous hollow carbon spheres: a novel catalyst for Fischer-Tropsch synthesis. Catal Today 275:76–83. https://doi.org/10.1016/j.cattod.2015.11.034

    Article  CAS  Google Scholar 

  9. Dong C, Yu Q, Ye R-P, Su P, Liu J, Wang G-H (2020) Hollow carbon spheres nanoreactors loaded with PdCu nanoparticles: void-confinement effects in liquid-phase hydrogenations. Angew Chem Int Ed. https://doi.org/10.1002/anie.202007297

    Article  Google Scholar 

  10. Nongwe I, Ravat V, Meijboom R, Coville NJ (2016) Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde. Appl Catal A Gen 517:30–38. https://doi.org/10.1016/j.apcata.2016.02.025

    Article  CAS  Google Scholar 

  11. Bin D-S, Chi Z-X, Li Y, Zhang K, Yang X, Sun Y-G, Piao J-Y, Cao A-M, Wan L-J (2017) Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J Am Chem Soc 139:13492–13498. https://doi.org/10.1021/jacs.7b07027

    Article  CAS  Google Scholar 

  12. Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D (2015) Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat Commun. https://doi.org/10.1038/ncomms8221

    Article  Google Scholar 

  13. Xu F, Ding B, Qiu Y, Dong R, Zhuang W, Xu X, Han H, Yang J, Wei B, Wang H, Kaskel S (2020) Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter 3:246–260. https://doi.org/10.1016/j.matt.2020.05.012

    Article  Google Scholar 

  14. Yang L-P, Lin X-J, Zhang X, Zhang W, Cao A-M, Wan L-J (2016) A general synthetic strategy for hollow hybrid microspheres through a progressive-inward-crystallization process. J Am Chem Soc 138:5916–5922. https://doi.org/10.1021/jacs.6b00773

    Article  CAS  Google Scholar 

  15. Xu F, Lu Y, Ma J, Huang Z, Su Q, Fu R, Wu D (2017) Facile, general and template-free construction of monodisperse yolk-shell metal@carbon nanospheres. Chem Commun 53:12136–12139. https://doi.org/10.1039/C7CC06502G

    Article  CAS  Google Scholar 

  16. Gangatharan PM, Maubane-Nkadimeng MS, Coville NJ (2019) Building carbon structures inside hollow carbon spheres. Sci Rep. https://doi.org/10.1035/s41598-019-46992-1

    Article  Google Scholar 

  17. Phaahlamohlaka TN, Kumi DO, Dlamini MW, Forbes R, Jewell LL, Billing DG, Coville NJ (2017) Effects of Co and Ru intimacy in Fischer–Tropsch catalysis using hollow carbon sphere supports: assesment of the hydrogen spillover processes. ACS Catal 7:1568–1578. https://doi.org/10.1021/acscatal.6b03102

    Article  CAS  Google Scholar 

  18. Forster S (2003) Amphilic block copolymers for templating applications. In: Antonietti M (ed) Colloid chemistry I, topics in current chemistry, vol 226. Springer, Berlin, pp 1–28. https://doi.org/10.1007/3-540-36408-0_1

    Chapter  Google Scholar 

  19. Alexandridis P, Tsianou M (2011) Block copolymer-directed metal nanoparticle morphogenesis and organization. Eur Polym J 47:569–583. https://doi.org/10.1016/j.eurpolymj.2010.10.021

    Article  CAS  Google Scholar 

  20. Forster S, Konrad M (2003) From self-organizing polymers to nano- and biomaterials. J Mater Chem 13:2671–2688. https://doi.org/10.1039/B307512P

    Article  Google Scholar 

  21. Yu C-L, Bian F, Zhang S-F, Xu X, Ren P, Wang F-C, Zhang F-A (2018) Preparation of the monodispersed carboxyl-functionalized polymer microspheres with disproportionated rosin moety and adsorption of methylene blue. Adsorp Sci Technol 36:1260–1273. https://doi.org/10.1177/0263617418766774

    Article  CAS  Google Scholar 

  22. Cho SM, Song G, Park C, Lee Y, Kang HS, Lee W, Park S, Huh J, Ryu DY, Park C (2018) Surface functionalized nanostructures via position registered supramolecular polymer assembly. Nanoscale 10:6333–6342. https://doi.org/10.1039/C7NR07852H

    Article  CAS  Google Scholar 

  23. Martin HJ, White BT, Scanlon CJ, Saito T, Dadmun MD (2017) Tunable synthetic control of soft polymeric nanoparticle morphology. Soft Matter 13:8849–8857. https://doi.org/10.1039/C7SM01533J

    Article  CAS  Google Scholar 

  24. Wang Y, Biradar AV, Wang G, Sharma KK, Duncan CT, Rangan S, Asefa T (2010) Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chem Eur J 16:10735–10743. https://doi.org/10.1002/chem.201000354

    Article  CAS  Google Scholar 

  25. Klingelhofer S, Heitz W, Greiner A, Oestreich S, Forster S, Antonietti M (1997) Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the heck reaction. J Am Chem Soc 119:10116–10120. https://doi.org/10.1021/ja9714604

    Article  Google Scholar 

  26. Zhang L, Eisenberg A (1995) Multiple morphologies of "crew-cut" polystyre-b-poly(acrylic acid) block copolymers. Science 268:1728–1731. https://doi.org/10.1126/science.268.5218.1728

    Article  CAS  Google Scholar 

  27. Fu J, Xu Q, Chen J, Chen Z, Huang X, Tang X (2010) Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/crosslinked polyphosphazene composites. Chem Commun 46:6563–6565. https://doi.org/10.1039/C0CC01185A

    Article  CAS  Google Scholar 

  28. Liu J, Qiao SZ, Lui H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951. https://doi.org/10.1002/anie.201102011

    Article  CAS  Google Scholar 

  29. Luo L, Eisenberg A (2001) Thermodynamic size control of block copolymer vesicles in solution. Langmuir 17:6804–6811. https://doi.org/10.1021/la0104370

    Article  CAS  Google Scholar 

  30. Ayres N, Boyes SG, Brittain WJ (2007) Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization. Langmuir 23:182–189. https://doi.org/10.1021/la061526l

    Article  CAS  Google Scholar 

  31. Arslan M, Yilmaz G, Yagci Y (2014) Synthesis of polystyrene-b-poly(ethylene glycol) block copolymers by radical exchange reactions of RAFT agents. Des Monomers Polym 17:238–244. https://doi.org/10.1080/15685551.2013.840478

    Article  CAS  Google Scholar 

  32. Abood Mabdal-H (2013) Synthesis and characterization of grafted polystyrene with acrylic acid using gamma-irradiation. Aust J Basic Appl Sci 7:746–750

    Google Scholar 

  33. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol formaldehyde organic and carbon gels. Adv Mater 15:101–114. https://doi.org/10.1002/adma.200390020

    Article  CAS  Google Scholar 

  34. Cai W, Gu M, Jin W, Zhou J (2019) CTAB-functionalized C@SiO2 double-shelled hollow microspheres with enhanced and selective adsorption performance for Cr(VI). J Alloys Compd 777:1304–1312. https://doi.org/10.1016/j.jallcom.2018.11.070

    Article  CAS  Google Scholar 

  35. Lui X, Li S, Mei J, Lau WM, Mi R, Li Y, Liu H, Liu L (2014) From melamine-resorcinol-formaldehyde to nitrogen doped carbon xerogels with micro and meso-pores for lithium batteries. J Mater Chem A 2:14429–14438. https://doi.org/10.1039/C4TA02928C

    Article  CAS  Google Scholar 

  36. Mongwe TH, Matsoso BJ, Mutuma BK, Coville NJ, Maubane MS (2018) Synthesis of chain-like carbon nano-onions by a flame assisted pyrolysis technique using different collecting plates. Diam Relat Mater 90:135–143. https://doi.org/10.1016/j.diamond.2018.10.002

    Article  CAS  Google Scholar 

  37. Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473:68–73. https://doi.org/10.1016/j.tca.2008.04.015

    Article  CAS  Google Scholar 

  38. Koo J, Kim J, Lee H, Chung H, Lee Y, Yi W, Sohn D (2012) Formation and characterization of poly(acrylic acid) on silica particles irradiated by γ-ray radiation. Macromol Res 20:138–142. https://doi.org/10.1007/s13233-012-0078-2

    Article  CAS  Google Scholar 

  39. Todica M, Stefan R, Pop CV, Olar L (2015) IR and Raman investigation of some poly(acrylic) acid gels in aqueous and neutralized state. Acta Phys Pol A 128:128–135. https://doi.org/10.12693/APhysPolA.128.128

    Article  CAS  Google Scholar 

  40. Murli C, Song Y (2010) Pressure-induced polymerization of acrylic acid: a Raman spectroscopic study. J Phys Chem B 114:9744–9750. https://doi.org/10.1021/jp1034757

    Article  CAS  Google Scholar 

  41. Phaahlamohlaka TN, Dlamini MW, Kumi DO, Forbes R, Jewell LL, Coville NJ (2020) Co inside hollow carbon spheres as a Fischer–Tropsch catalyst: Spillover effects from Ru placed inside and outside the HCSs. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2020.117617

    Article  Google Scholar 

  42. Molefe T, Forbes RP, Coville NJ (2020) Osmium@Hollow carbon spheres as Fischer–Tropsch synthesis catalysts. Catal Lett. https://doi.org/10.1007/s10562-020-03347-0

    Article  Google Scholar 

  43. Mosiane LR, Matsoso BJ, Makhongoana A, Mutuma BK, Mongwe TH, Coville NJ, Maubane-Nkadimeng MS (2019) Tuning the properties of CVD-grown multiwalled carbon nanotubes by ex situ codoping with boron and nitrogen heteroatoms. J Nanopart Res. https://doi.org/10.1007/s11051-019-4654-7

    Article  Google Scholar 

  44. Boskovic BO, Golovko VB, Cantoro M, Kleinsorge BY, Chuang ATH, Ducati C, Hofmann S, Robertson J, Johnson BFG (2005) Low temperature synthesis of carbon nanofibres on carbon fibre matrices. Carbon 43:2643–2648. https://doi.org/10.1016/j.carbon.2005.04.034

    Article  CAS  Google Scholar 

  45. Fu R, Baumann TF, Cronin S, Dresselhaus G, Dresselhaus MS, Satcher JHJ (2005) Formation of graphitic structures in cobalt-nickel doped carbon aerogels. Langmuir 21:2647–2651. https://doi.org/10.1021/la047344d

    Article  CAS  Google Scholar 

  46. Chandra S, Bag S, Bhar R, Pramanik P (2011) Effect of transition and non-transition metals during the synthesis of carbon xerogels. Microporous Mesoporous Mater 138:149–156. https://doi.org/10.1016/j.micromeso.2010.09.012

    Article  CAS  Google Scholar 

  47. Maldonado-Hodar FJ, Ferro-Garcia MA, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural properties of organic aerogels, transition-metal-cotaining organic aerogels and their carbonized derivatives. Carbon 37:1199–1205. https://doi.org/10.1016/S0008-6223(98)00314-5

    Article  CAS  Google Scholar 

  48. Liu Z, Li J, Yang Y, Mi JH, Tan XL (2012) Synthesis, characterization and magnetic examination of Fe, Co and Ni doped carbon xerogels. Mat Res Inov 16:362–367. https://doi.org/10.1179/143307512X13463991318033

    Article  CAS  Google Scholar 

  49. Zhu D, Huang Y, Cao J, Lee CS, Chen M, Shen Z (2019) Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: oxygen activation and efficient catalytic removal of formaldehyde at room temperature. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.117981

    Article  Google Scholar 

  50. Alex AS, Lekshmi AM, Sekkar V, John B, Gouri C, Ilangovan S (2017) Microporous carbon aerogel prepared through ambient pressure drying routes as anode material for lithium ion cells. Polym Adv Technol 28:1945–1950. https://doi.org/10.1002/pat.4085

    Article  CAS  Google Scholar 

  51. Mos YM, Vermeulem AC, Buisman CJN, Weijma J (2018) X-Ray Diffraction of iron containing samples: the importance of a suitable configuration. Geomicrobiol J 35:511–517. https://doi.org/10.1080/01490451.2017.1401183

    Article  CAS  Google Scholar 

  52. Dlamini MW, Phaahlamohlaka TN, Kumi DO, Forbes R, Jewell LL, Coville NJ (2020) Post doped nitrogen-decorated hollow carbon spheres as a support for Co Fischer–Tropsch catalysts. Catal Today 342:99–110. https://doi.org/10.1016/j.cattod.2019.01.070

    Article  CAS  Google Scholar 

  53. Dlamini MW, Kumi DO, Phaahlamohlaka TN, Lyadov AS, Billing DG, Jewell LL, Coville NJ (2015) Carbon spheres prepared by hydrothermal synthesis—a support for bimetallic iron coblat Fischer–Tropsch catalysts. ChemCatChem 7:3000–3011. https://doi.org/10.1002/cctc.201500334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF), South Africa, the University of the Witwatersrand (Postgraduate Merit Award), HYSA (Hydrogen South Africa) and the DSI-NRF Centre of Excellence in Strong Materials (CoESM). Sincere gratitude goes to Ms Petra Dinham (School of Chemical and Metallurgical Engineering, University of the Witwatersrand) for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Coville.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mente, P., Phaahlamohlaka, T.N., Mashindi, V. et al. Polystyrene-b-poly(acrylic acid) nanospheres for the synthesis of size-controlled cobalt nanoparticles encapsulated inside hollow carbon spheres. J Mater Sci 56, 2113–2128 (2021). https://doi.org/10.1007/s10853-020-05323-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05323-w

Navigation