Skip to main content
Log in

Controlled synthesis of α-Fe2O3@rGO core–shell nanocomposites as anode for lithium ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fine shape control of metal oxides nanocrystal and component are the key for the preparation of high-performance metal oxides/graphene nanocomposites. Herein, a simpler and practicable in situ one-pot approach was used to synthetize α-Fe2O3@reduced graphene oxide (rGO) core–shell nanocomposites. By controlling the amount of hydrazine hydrate and GO in reaction system, the shape of α-Fe2O3 nanocrystals can be tailored from spindle gradually to ellipsoid and quasi-sphere, and the thickness of enwrapped rGO can also be finely controlled. The as-prepared α-Fe2O3@rGO core–shell composites showed much better lithium storage performance than bare α-Fe2O3 nanocrystals. Owing to the core–shell structure and the high conductivity and stability of rGO nanosheet, the quasi-sphere-α-Fe2O3@rGO composites delivered a high reversible specific capacity up to 971 mAh g−1 at the current density of 0.2 A g−1, retaining 530 mA h g−1 at 2 A g−1 and 361 mA h g−1 at 5 A g−1 after 800 cycles with only 0.05% decay per-cycle. Moreover, the facile approach can provide a new strategy for the fabrication of other shape-size dependent, functional, and multicomponent graphene-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yin J, Yu Z, Gao F, Wang J, Pang H, Lu Q (2010) Low-symmetry iron oxide nanocrystals bound by high-index facets. Angew Chem Int Ed 49:6328–6332

    CAS  Google Scholar 

  2. Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L (2012) Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew Chem Int Ed 51:178–182

    CAS  Google Scholar 

  3. Wu C, Xu Y, Ao L, Jiang K, Shang L, Li Y, Hu Z, Chu J (2020) Robust three-dimensional porous rGO aerogel anchored with ultra-fine α-Fe2O3 nanoparticles exhibit dominated pseudocapacitance behavior for superior lithium storage. J Alloys Compd 816:152627

    CAS  Google Scholar 

  4. Chen D, Zhou S, Quan H, Zou R, Gao W, Luo X, Guo L (2018) Tetsubo-like α-Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors. Chem Eng J 341:102–111

    CAS  Google Scholar 

  5. Frindy S, Sillanpää M (2020) Synthesis and application of novel α-Fe2O3/graphene for visible-light enhanced photocatalytic degradation of RhB. Mater Des 188:108461

    CAS  Google Scholar 

  6. Mazloum-Ardakani M, Sadri N, Eslami V (2020) Detection of dexamethasone sodium phosphate in blood plasma: application of hematite in electrochemical sensors. Electroanalysis 32:1148–1154

    CAS  Google Scholar 

  7. Liang Y, Wang M, Xiong J, Hou J, Wang X, Tan W (2019) Al-substitution-induced defect sites enhance adsorption of Pb2+ on hematite. Environ Sci Nano 6:1323–1331

    CAS  Google Scholar 

  8. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4:432–449

    CAS  Google Scholar 

  9. Mandal S, Müller AHE (2008) Facile route to the synthesis of porous α-Fe2O3 nanorods. Mater Chem Phys 111:438–443

    CAS  Google Scholar 

  10. Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, Nasibulina LI, Jani S, Kauppinen EI (2010) Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res 2:373–379

    Google Scholar 

  11. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736

    CAS  Google Scholar 

  12. Chen L, Yang X, Chen J, Liu J, Wu H, Zhan H, Liang C, Wu M (2010) Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg Chem 49:8411–8420

    CAS  Google Scholar 

  13. Xu L, Xia J, Wang L, Qian J, Li H, Wang K, Sun K, He M (2014) a-Fe2O3 cubes with high visible-light-activated photoelectrochemical activity towards glucose: hydrothermal synthesis assisted by a hydrophobic ionic liquid. Chemistry 20:2244–2253

    CAS  Google Scholar 

  14. Liu Z, Yu R, Dong Y, Li W, Lv B (2017) The adsorption behavior and mechanism of Cr(VI) on 3D hierarchical α-Fe2O3 structures exposed by (001) and non-(001) planes. Chem Eng J 309:815–823

    CAS  Google Scholar 

  15. Quan H, Cheng B, Xiao Y, Lei S (2016) One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem Eng J 286:165–173

    CAS  Google Scholar 

  16. Han S, Hu L, Liang Z, Wageh S, Al-Ghamdi AA, Chen Y, Fang X (2014) One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv Funct Mater 24:5719–5727

    CAS  Google Scholar 

  17. Chen D, Wei W, Wang R, Zhu J, Guo L (2012) α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries. New J Chem 36:1589–1595

    CAS  Google Scholar 

  18. Chen D, Quan H, Liang J, Guo L (2013) One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Nanoscale 5:9684

    CAS  Google Scholar 

  19. Meng F, Li J, Cushing SK, Bright J, Zhi M, Rowley JD, Hong Z, Manivannan A, Bristow AD, Wu N (2013) Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal 3:746–751

    CAS  Google Scholar 

  20. Xia H, Hong C, Li B, Zhao B, Lin Z, Zheng M, Savilov SV, Aldoshin SM (2015) Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv Funct Mater 25:627–635

    CAS  Google Scholar 

  21. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    CAS  Google Scholar 

  22. Qi X, Zhang HB, Xu J, Wu X, Yang D, Qu J, Yu ZZ (2017) Highly efficient high-pressure homogenization approach for scalable production of high-quality graphene sheets and sandwich-structured alpha-Fe2O3/graphene hybrids for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9:11025–11034

    CAS  Google Scholar 

  23. Qu J, Yin YX, Wang YQ, Yan Y, Guo YG, Song WG (2013) Layer structured alpha-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 5:3932–3936

    CAS  Google Scholar 

  24. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    CAS  Google Scholar 

  25. de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Google Scholar 

  26. Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30:355–360

    CAS  Google Scholar 

  27. Giarola M, Mariotto G, Ajò D (2011) Micro-Raman investigations on inclusions of unusual habit in a commercial tanzanite gemstone. J Raman Spectrosc 43:556–558

    Google Scholar 

  28. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  29. Selvakumar R, Kavitha S, Sathishkumar M, Swaminathan K (2008) Arsenic adsorption by polyvinyl pyrrolidone K25 coated cassava peel carbon from aqueous solution. J Hazard Mater 153:67–74

    CAS  Google Scholar 

  30. Dispenza C, Presti CL, Belfiore C, Spadaro G, Piazza S (2006) Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone). Polymer 47:961–971

    CAS  Google Scholar 

  31. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B Condens Matter 406:1706–1712

    CAS  Google Scholar 

  32. Singh M, Kumar V (2009) Preparation and characterization of melamine-formaldehyde-polyvinylpyrrolidone polymer resin for better industrial uses over melamine resins. J Appl Polym Sci 114:1870–1878

    CAS  Google Scholar 

  33. Wu SY-H, Yang K-C, Tseng C-L, Chen J-C, Lin F-H (2010) Silica-modified Fe-doped calcium sulfide nanoparticles for in vitro and in vivo cancer hyperthermia. J Nanopart Res 13:1139–1149

    Google Scholar 

  34. Ruan HD, Frost RL, Kloprogge JT, Duong L (2002) Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim Acta A 58:967–981

    CAS  Google Scholar 

  35. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172–2176

    CAS  Google Scholar 

  36. Yoon S, In I (2010) Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction. J Mater Sci 46:1316–1321. https://doi.org/10.1007/s10853-010-4917-2

    Article  CAS  Google Scholar 

  37. Van T-K, Cha HG, Nguyen CK, Kim S-W, Jung M-H, Kang YS (2012) Nanocystals of hematite with unconventional shape-truncated hexagonal bipyramid and its optical and magnetic properties. Cryst Growth Des 12:862–868

    CAS  Google Scholar 

  38. Zheng Y, Cheng Y, Wang Y, Bao F, Zhou L, Wei X, Zhang Y, Zheng Q (2006) Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J Phys Chem B 110:3093–3097

    CAS  Google Scholar 

  39. Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003) Effect of particle size on lithium intercalation into α-Fe2O3. J Electrochem Soc 150:A133–A139

    CAS  Google Scholar 

  40. Wu X-L, Guo Y-G, Wan L-J, Hu C-W (2008) α-Fe2O3 nanostructures: Inorganic salt-controlled synthesis and their electrochemical performance toward lithium storage. J Phys Chem C 112:16824–16829

    CAS  Google Scholar 

  41. Zhang W-M, Wu X-L, Hu J-S, Guo Y-G, Wan L-J (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946

    CAS  Google Scholar 

  42. Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J Mater Chem 20:5538–5543

    CAS  Google Scholar 

  43. Yang Z, Shen J, Archer LA (2011) An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries. J Mater Chem 21:11092–11097

    CAS  Google Scholar 

  44. Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683

    CAS  Google Scholar 

  45. Wang B, Chen JS, Wu HB, Wang Z, Lou XWD (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146–17148

    CAS  Google Scholar 

  46. Hassan MF, Rahman MM, Guo ZP, Chen ZX, Liu HK (2010) Solvent-assisted molten salt process: a new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochim Acta 55:5006–5013

    CAS  Google Scholar 

  47. Cheng F, Huang K, Liu S, Liu J, Deng R (2011) Surfactant carbonization to synthesize pseudocubic α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochim Acta 56:5593–5598

    CAS  Google Scholar 

  48. Zhang ZY, Liang JS, Zhang X, Yang WF, Dong XL, Jung YG (2020) Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. Int J Hydrog Energy 45:8186–8197

    CAS  Google Scholar 

  49. Zhou W, Zhu J, Cheng C, Liu J, Yang H, Cong C, Guan C, Jia X, Fan HJ, Yan Q, Li CM, Yu T (2011) A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy Environ Sci 4:4954–4961

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nation Natural Science Foundation (Grant No. 51968049) of China, the Youth Science Foundation (Grant No. 20192ACB21031) of Jiangxi Province, China, the Young Talents Training Plan (Grant No. 20192BCB23012) for Scientific and Technological Innovation of Jiangxi Province, China, and the Graduate Innovation Foundation (YC2018009) of Jiangxi Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dezhi Chen or Junfei Liang.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2020_5215_MOESM1_ESM.pdf

Additional digital photograph, AFM, Raman, SEM, TEM and electrochemical data. This material is available free of charge via the Internet (PDF 1368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, H., Zeng, W., Pan, M. et al. Controlled synthesis of α-Fe2O3@rGO core–shell nanocomposites as anode for lithium ion batteries. J Mater Sci 56, 664–676 (2021). https://doi.org/10.1007/s10853-020-05215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05215-z

Navigation