Skip to main content
Log in

Highly smooth and conductive silver film with metallo-organic decomposition ink for all-solution-processed flexible organic thin-film transistors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile silver metallo-organic decomposition (MOD) ink and its two-step sintering process was developed to fabricate highly conductive and smooth silver film for the flexible organic electronics. Using simple and feasible two-step sintering processes and double-layer processes, the conductivity of silver film with the facile MOD ink was greatly improved from 2.85 × 103 S cm−1 to 1.50 × 105 S cm−1, indicating about 53 times increase and about 24% bulk silver conductivity, and the surface RMS roughness was about 6 nm by atomic force microscope, nearly identical to the thermal-evaporated silver film. The XRD showed that synthesized silver thin films were composed of pure silver and well crystallized to the face-centered cubic structure, similar to metallic silver. And the full XPS spectra showed the presence of the same elements and almost identical peaks of solution-processed silver, as compared to the thermal silver surface elemental data. Besides, the silver film also demonstrated great mechanical stability and adhesion on PET substrate. At last, using silver gate/source/drain electrodes generated from the MOD ink, the all-solution-processed organic thin-film transistors (OTFTs) were demonstrated. The optimized OTFTs exhibited a high field mobility of 0.36 cm2 V−1 s−1 with threshold voltage of 0.35 V and on/off current ratio of 1 × 105.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. White MS, Kaltenbrunner M, Glowacki ED, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe DAM, Miron MC, Major Z, Scharber MC, Sekitani T, Someya T, Bauer S, Sariciftci NS (2013) Ultrathin, highly flexible and stretchable PLEDs. Nat Photon 7:811–816

    CAS  Google Scholar 

  2. Ouyang S, Xie Y, Wang D, Zhu D, Xu X, Tan T, John D, Fong HH (2014) Photolithographic patterning of highly conductive PEDOT:PSS and its application in organic light-emitting diodes. J Polym Sci Pol Phys 52:1221–1226

    CAS  Google Scholar 

  3. Xie Y, Wang D, Lee W, Bao Z, Matthews JR, Niu W, Bellman RA, He M, Fong HH (2015) High performance top contact fused thiophene–diketopyrrolopyrrole copolymer transistors using a photolithographic metal lift-off process. Org Electron 20:55–62

    CAS  Google Scholar 

  4. Xie Y, Cai S, Shi Q, Ouyang S, Lee W, Bao Z, Matthews JR, Bellman RA, He M, Fong HH (2014) High performance organic thin film transistors using chemically modified bottom contacts and dielectric surfaces. Org Electron 15:2073–2078

    CAS  Google Scholar 

  5. Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3:770

    Google Scholar 

  6. Na SI, Kim SS, Jo J, Kim DY (2008) Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater 20:4061–4067

    CAS  Google Scholar 

  7. Hopkins J, Fidanovski K, Lauto A, Mawad D (2019) All-organic semiconductors for electrochemical biosensors: an overview of recent progress in material design. Front Bioeng Biotechnol 7:237

    Google Scholar 

  8. Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Hervé T, Sanaur S, Bernard C, Malliaras GG (2013) In vivo recordings of brain activity using organic transistors. Nat Commun 4:1575

    Google Scholar 

  9. Jiang D, Wang Y, Li B, Sun C, Wu Z, Yan H, Xing L, Qi S, Li Y, Liu H, Xie W, Wang X, Ding T, Guo Z (2019) Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol Mater Eng 304:1900074(01-09)

    Google Scholar 

  10. Kashfipour MA, Mehra N, Dent RS, Zhu J (2019) Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng Sci 8:11–18

    Google Scholar 

  11. Sun K, Wang L, Wang Z, Wu X, Fan G, Wang Z, Cheng C, Fan R, Dong M, Guo Z (2020) Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Phys Chem Chem Phys 22:5114–5122

    CAS  Google Scholar 

  12. Hafez AM, Sheng J, Cao D, Chen Y, Zhu H (2019) Flexible lithium metal anode featuring ultrahigh current density stability with uniform deposition and dissolution. ES Energy Environ. 5:85–93

    Google Scholar 

  13. Shi S, Qian Y, Mei P, Yuan Y, Jia N, Dong M, Fan J, Guo Z, Wang N (2020) Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 71:104629

    CAS  Google Scholar 

  14. Cai J, Xu W, Liu Y, Zhu Z, Liu G, Ding W, Wang G, Wang H, Luo Y (2019) Robust construction of flexible bacterial cellulose@Ni(OH)2 paper: toward high capacitance and sensitive H2O2 detection. Eng Sci 5:21–29

    Google Scholar 

  15. Liu H, Li Q, Bu Y, Zhang N, Wang C, Pan C, Mi L, Guo Z, Liu C, Shen C (2019) Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 66:104143

    CAS  Google Scholar 

  16. Sun K, Dong J, Wang Z, Fan G, Hou Q, An L, Dong M, Fan R, Guo Z (2019) Tunable negative permittivity in flexible graphene/PDMS metacomposites. J Phys Chem C 123:23635–23642

    CAS  Google Scholar 

  17. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H, He H, Wang N, Jiang K, Lin H, Zhang H, Guo Z (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Func Mater 28:1706777

    Google Scholar 

  18. Chen J, Yu Q, Cui X, Dong M, Zhang J, Wang C, Fan J, Zhu Y, Guo Z (2019) An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 7:11710–11730

    CAS  Google Scholar 

  19. Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666

    CAS  Google Scholar 

  20. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    CAS  Google Scholar 

  21. Wu J, Xue S, Bridges D, Yu Y, Smith C, Hong K, Hill C, Zhang Z, Feng Z, Hu A (2018) Electrophoretic deposition and thermo-chemical properties of Al/Fe2O3 nanothermite thick films. Eng Sci 4:52–64

    Google Scholar 

  22. Hu J, Lin J, Zhang Y, Lin Z, Qiao Z, Liu Z, Yang W, Liu X, Dong M, Guo Z (2019) A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. J Mater Chem A 7:26039–26052

    CAS  Google Scholar 

  23. Waghmare M, Sonone P, Patil P, Kadam V, Pathan H, Ubale A (2019) Spray pyrolytic deposition of zirconium oxide thin films: influence of concentration on structural and optical properties. Eng Sci 5:79–87

    Google Scholar 

  24. Bhujbal PK, Pathan HM, Chaure NB (2019) Deposition of amorphous and crystalline Al doped ZnO thin films by RF magnetron sputtering and their comparative properties. ES Energy Environ. 4:15–18

    Google Scholar 

  25. Li R, Li W, Liu M, He Q, Wang Y, Zhan Q, Wang T (2019) Structural, morphological, optical and electrical properties of Cu-doped PbS nanofilms. ES Mater Manuf 4:38–44

    Google Scholar 

  26. Lee K, Cho S, Heum Park S, Heeger AJ, Lee CW, Lee SH (2006) Metallic transport in polyaniline. Nature 441:65–68

    CAS  Google Scholar 

  27. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray DJ, Windle AH (2000) Carbon nanotube and polypyrrole composites: coating and doping. Adv Mater 12:522–525

    CAS  Google Scholar 

  28. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo Y-R, Kim B-J, Lee K (2014) Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 26:2268–2272

    CAS  Google Scholar 

  29. Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24:2436–2440

    CAS  Google Scholar 

  30. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    CAS  Google Scholar 

  31. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23:2779–2795

    CAS  Google Scholar 

  32. Li J, Ye F, Vaziri S, Muhammed M, Lemme MC, Östling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992

    CAS  Google Scholar 

  33. Zeng WJ, Wu HB, Zhang C, Huang F, Peng JB, Yang W, Cao Y (2007) Polymer light-emitting diodes with cathodes printed from conducting Ag paste. Adv Mater 19:810–814

    CAS  Google Scholar 

  34. Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert US (2012) Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv Mater 24:2620–2625

    CAS  Google Scholar 

  35. Ji D, Jiang L, Dong H, Meng Q, Zhen Y, Hu W (2014) Silver mirror reaction for organic electronics: towards high-performance organic field-effect transistors and circuits. J Mater Chem C 2:4142–4146

    CAS  Google Scholar 

  36. Tai YL, Yang ZG (2011) Fabrication of paper-based conductive patterns for flexible electronics by direct-writing. J Mater Chem 21:5938–5943

    CAS  Google Scholar 

  37. Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19–36

    CAS  Google Scholar 

  38. Wu Y, Li Y, Ong BS (2007) A simple and efficient approach to a printable silver conductor for printed electronics. J Am Chem Soc 129:1862–1863

    CAS  Google Scholar 

  39. Li Y, Wu Y, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127:3266–3267

    CAS  Google Scholar 

  40. Wu Y, Li Y, Ong BS (2006) Printed silver ohmic contacts for high-mobility organic thin-film transistors. J Am Chem Soc 128:4202–4203

    CAS  Google Scholar 

  41. Perelaer J, de Gans BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104

    CAS  Google Scholar 

  42. Perelaer BJ, de Laat AWM, Hendriks CE, Schubert US (2000) Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J Mater Chem 18:3209–3215

    Google Scholar 

  43. Magdassi S, Grouchko M, Berezin O, Kamyshny A (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4:1943–1948

    CAS  Google Scholar 

  44. Layani M, Grouchko M, Shemesh S, Magdassi S (2012) Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. J Mater Chem 22:14349–14352

    CAS  Google Scholar 

  45. Valeton JJP, Hermans K, Bastiaansen CWM, Broer DJ, Perelaer J, Schubert US, Crawford GP, Smith PJ (2010) Room temperature preparation of conductive silver features using spin-coating and inkjet printing. J Mater Chem 20:543–546

    CAS  Google Scholar 

  46. Chang Y, Wang D-Y, Tai Y-L, Yang Z-G (2012) Preparation, characterization and reaction mechanism of a novel silver-organic conductive ink. J Mater Chem 22:25296–25301

    CAS  Google Scholar 

  47. Shin DY, Yi GR, Lee D, Park J, Lee YB, Hwang I, Chun S (2013) Rapid two-step metallization through physicochemical conversion of Ag2O for printed “black” transparent conductive films. Nanoscale 5:5043–5052

    CAS  Google Scholar 

  48. Walker SB, Lewis JA (2012) Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc 134:1419–1421

    CAS  Google Scholar 

  49. Long Y, Wu J, Wang H, Zhang X, Zhao N, Xu J (2011) Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers. J Mater Chem 21:4875–4881

    CAS  Google Scholar 

  50. Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304

    CAS  Google Scholar 

  51. Li CC, Chang SJ, Su FJ, Lin SW, Chou YC (2013) Effects of capping agents on the dispersion of silver nanoparticles. Colloids Surf A 419:209–215

    CAS  Google Scholar 

  52. Kim D, Jeong S, Lee S, Park BK, Moon J (2007) Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films 515:7692–7696

    CAS  Google Scholar 

  53. Lee SH, Kim SH, Choi MH, Choo DJ, Jang J (2012) Solution processed Ag electrode for organic thin-film transistors. Solid State Electron 75:1–5

    CAS  Google Scholar 

  54. Shi Q, Xie Y, Cai S, Lee W, Bao Z, Matthews JR, Bellman R, He M, Fong HH (2014) High performance tetrathienoacene-DDP based polymer thin-film transistors using a photo-patternable epoxy gate insulating layer. Org Electron 15:991–996

    CAS  Google Scholar 

  55. Matthews JR, Niu W, Tandia A, Wallace AL, Hu J, Lee W, Giri G, Mannsfeld SCB, Xie Y, Cai S, Fong HH, Bao Z, He M (2013) Scalable synthesis of fused thiophene-diketopyrrolopyrrole semiconducting polymers processed from nonchlorinated solvents into high performance thin film transistors. Chem Mater 25:782–789

    CAS  Google Scholar 

  56. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    CAS  Google Scholar 

  57. Bhujbal PK, Pathan HaM, Chaure NB (2020) Temperature Dependent Studies on Radio Frequency Sputtered Al Doped ZnO Thin Films. Eng Sci 10:58–67

    Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant No. 61804019, 61574092), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800623) and Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0343). It was performed in part at the facilities in National Engineering Lab for TFT-LCD Key Materials and Technologies in SJTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Hang Fong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Ouyang, S., Wang, D. et al. Highly smooth and conductive silver film with metallo-organic decomposition ink for all-solution-processed flexible organic thin-film transistors. J Mater Sci 55, 15908–15918 (2020). https://doi.org/10.1007/s10853-020-05140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05140-1

Navigation