Skip to main content
Log in

Robust evaluation of superabsorbent polymers as an internal curing agent in cementitious composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The internal curing of cementitious composites (CCs) has been a subject of supreme importance for the past few years. Although superabsorbent polymers (SAPs) have been utilized in several industries like sanitary, agriculture, and medical, their usability as an internal curing agent to counteract self-desiccation of CC is quite new. In consideration of ongoing demand and usability of SAP, this review article comprehensively discusses the properties and performance of SAP in internally cured CC such as cement paste, mortar, and concrete. The properties of SAP documented include absorption, swelling, and desorption. In addition, the effect of SAP on shrinkage (chemical, plastic, autogenous and drying), rheological (workability, slump, and viscosity), mechanical (compressive, tensile, and flexural strength), and durability (permeability and frost resistance) properties has been extensively discussed. Furthermore, after an in-depth analysis of the mentioned topics, this article gives critical note toward the effective use of SAP in CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

Similar content being viewed by others

References

  1. Jiang Z, Sun Z, Wang P (2005) Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes. Cem Concr Res 35(8):1539–1545. https://doi.org/10.1016/j.cemconres.2004.06.028

    Article  CAS  Google Scholar 

  2. Beaudoin J, Odler I (2019) Hydration, setting and hardening of Portland cement. In: Lea's chemistry of cement and concrete, p 157

  3. Afroughsabet V, Biolzi L, Ozbakkaloglu T (2016) High-performance fiber-reinforced concrete: a review. J Mater Sci 51(14):6517–6551. https://doi.org/10.1007/s10853-016-9917-4

    Article  CAS  Google Scholar 

  4. Liu J, Shi C, Ma X, Khayat KH, Zhang J, Wang D (2017) An overview on the effect of internal curing on shrinkage of high performance cement-based materials. Constr Build Mater 146:702–712. https://doi.org/10.1016/j.conbuildmat.2017.04.154

    Article  CAS  Google Scholar 

  5. Henkensiefken R, Castro J, Bentz D, Nantung T, Weiss J (2009) Water absorption in internally cured mortar made with water-filled lightweight aggregate. Cem Concr Res 39(10):883–892. https://doi.org/10.1016/j.cemconres.2009.06.009

    Article  CAS  Google Scholar 

  6. Rößler C, Bui D-D, Ludwig H-M (2014) Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete. Cement Concr Compos 53:270–278. https://doi.org/10.1016/j.cemconcomp.2014.07.015

    Article  CAS  Google Scholar 

  7. Liu F, Wang J, Qian X, Hollingsworth J (2017) Internal curing of high performance concrete using cenospheres. Cem Concr Res 95:39–46. https://doi.org/10.1016/j.cemconres.2017.02.023

    Article  CAS  Google Scholar 

  8. Danish A, Mosaberpanah MA (2019) Formation mechanism and applications of cenospheres: a review. J Mater Sci 55:1–19. https://doi.org/10.1007/s10853-019-04341-7

    Article  CAS  Google Scholar 

  9. Shen D, Jiang J, Jiao Y, Shen J, Jiang G (2017) Early-age tensile creep and cracking potential of concrete internally cured with pre-wetted lightweight aggregate. Constr Build Mater 135:420–429. https://doi.org/10.1016/j.conbuildmat.2016.12.187

    Article  Google Scholar 

  10. Justs J, Wyrzykowski M, Bajare D, Lura P (2015) Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res 76:82–90. https://doi.org/10.1016/j.cemconres.2015.05.005

    Article  CAS  Google Scholar 

  11. De la Varga I, Castro J, Bentz D, Weiss J (2012) Application of internal curing for mixtures containing high volumes of fly ash. Cement Concr Compos 34(9):1001–1008. https://doi.org/10.1016/j.cemconcomp.2012.06.008

    Article  CAS  Google Scholar 

  12. Craeye B, Geirnaert M, De Schutter G (2011) Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks. Constr Build Mater 25(1):1–13. https://doi.org/10.1016/j.conbuildmat.2010.06.063

    Article  Google Scholar 

  13. Geiker MR, Bentz, DP, Jensen OM (2004) Mitigating autogenous shrinkage by internal curing. In: ACI special publications, pp 143–154

  14. Bentz DP, Jensen OM (2004) Mitigation strategies for autogenous shrinkage cracking. Cem Concr Compos 26(6):677–685. https://doi.org/10.1016/S0958-9465(03)00045-3

    Article  CAS  Google Scholar 

  15. Bentz DP, Weiss WJ (2011) Internal curing: a 2010 state-of-the-art review. US Department of Commerce, National Institute of Standards and Technology, Gaithersburg

    Book  Google Scholar 

  16. Danish A, Mosaberpanah MA, Salim MU (2020) Past and present techniques of self-healing in cementitious materials: A critical review on efficiency of implemented treatments. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2020.04.053

    Article  Google Scholar 

  17. Weiss J, Bentz D, Schindler A, Lura P (2012) Internal curing. Structure 12

  18. Jensen OM, Hansen PF, Lachowski EE, Glasser FP (1999) Clinker mineral hydration at reduced relative humidities. Cem Concr Res 29(9):1505–1512. https://doi.org/10.1016/S0008-8846(99)00132-5

    Article  CAS  Google Scholar 

  19. Jensen OM, Lura P (2006) Techniques and materials for internal water curing of concrete. Mater Struct 39(9):817–825. https://doi.org/10.1617/s11527-006-9136-6

    Article  CAS  Google Scholar 

  20. Lura P, Wyrzykowski M, Tang C, Lehmann E (2014) Internal curing with lightweight aggregate produced from biomass-derived waste. Cem Concr Res 59:24–33. https://doi.org/10.1016/j.cemconres.2014.01.025

    Article  CAS  Google Scholar 

  21. Kim H, Jang JG, Choi Y, Lee H-K (2014) Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing. Constr Build Mater 71:334–343. https://doi.org/10.1016/j.conbuildmat.2014.08.069

    Article  Google Scholar 

  22. Maruyama I, Sato R (2005) A trial of reducing autogenous shrinkage by recycled aggregate. In: Proceedings of self-desiccation and its importance in concrete technology, Gaithersburg, MD, vol 20, pp 264–270

  23. Mohr B, Premenko L, Nanko H, Kurtis K (2005) Examination of wood-derived powders and fibers for internal curing of cement-based materials. In: Proceedings of the 4th international seminar: self-desiccation and its importance in concrete technology, pp 229–244

  24. Zhutovsky S, Kovler K, Bentur A (2002) Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage. Mater Struct 35(2):97–101. https://doi.org/10.1007/BF02482108

    Article  CAS  Google Scholar 

  25. Babcock AE, Taylor P (2015) Impacts of internal curing on concrete properties

  26. Holt E, Leivo M (2004) Cracking risks associated with early age shrinkage. Cem Concr Compos 26(5):521–530. https://doi.org/10.1016/S0958-9465(03)00068-4

    Article  CAS  Google Scholar 

  27. Boucher EA (1990) Vapour pressure over free and capillary-condensed curved surfaces of aqueous salt solutions and of non-electrolyte solutions. Colloids Surf 46(2):271–281. https://doi.org/10.1016/0166-6622(90)80171-Y

    Article  CAS  Google Scholar 

  28. Jensen OM, Hansen PF (2001) Water-entrained cement-based materials: I. Principles and theoretical background. Cem Concr Res 31(4):647–654. https://doi.org/10.1016/S0008-8846(01)00463-X

    Article  CAS  Google Scholar 

  29. Persson B, Fagerlund G (2002) Self-desiccation and its importance in concrete technology. In: Proceedings of the third international research seminar in Lund: Citeseer, pp 14–15

  30. Fagerlund G (1973) Determination of pore-size distribution from freezing-point depression. Matériaux et construction 6(3):215–225. https://doi.org/10.1007/BF02479036

    Article  Google Scholar 

  31. Thomas JJ, FitzGerald SA, Neumann DA, Livingston RA (2001) State of water in hydrating tricalcium silicate and Portland cement pastes as measured by quasi-elastic neutron scattering. J Am Ceram Soc 84(8):1811–1816. https://doi.org/10.1111/j.1151-2916.2001.tb00919.x

    Article  CAS  Google Scholar 

  32. Valckenborg R, Pel L, Kopinga K (2002) Combined NMR cryoporometry and relaxometry. J Phys D Appl Phys 35(3):249. https://doi.org/10.1088/0022-3727/35/3/314

    Article  CAS  Google Scholar 

  33. Hammer T, Sellevold E (2004) Internal curing role of absorbed water in aggregates. Special Publication 218:131–142

    Google Scholar 

  34. Nielsen BS, Kronholm F (1988) Physical bonds of water in hardened cement paste. Nord Concr Res 7:207–221

    Google Scholar 

  35. Powers TC, Brownyard TL (1946) Studies of the physical properties of hardened Portland cement paste. J Proc 43(9):101–132

    Google Scholar 

  36. Nestle N, Galvosas P, Geier O, Zimmermann C, Dakkouri M, Kärger J (2001) Nuclear magnetic resonance study of diffusion and relaxation in hydrating white cement pastes of different water content. J Appl Phys 89(12):8061–8065. https://doi.org/10.1063/1.1375020

    Article  CAS  Google Scholar 

  37. Østergaard T (2001) Measurements on water entrained cement paste at NIST. GNI Newsletter

  38. Beyea SD, Balcom BJ, Mastikhin IV, Bremner TW, Armstrong RL, Grattan-Bellew PE (2000) Imaging of heterogeneous materials with a turbo spin echo single-point imaging technique. J Magn Reson 144(2):255–265. https://doi.org/10.1006/jmre.2000.2054

    Article  CAS  Google Scholar 

  39. Kiatkamjornwong S (2007) Superabsorbent polymers and superabsorbent polymer composites. ScienceAsia 33(s1):39–43. https://doi.org/10.2306/scienceasia1513-1874.2007.33(s1).039

    Article  Google Scholar 

  40. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, New York

    Google Scholar 

  41. Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735. https://doi.org/10.1007/s10853-010-4780-1

    Article  CAS  Google Scholar 

  42. Mechtcherine V (2016) Use of superabsorbent polymers (SAP) as concrete additive. RILEM Tech Lett 1:81–87. https://doi.org/10.21809/rilemtechlett.2016.18

    Article  Google Scholar 

  43. Hua F, Qian M (2001) Synthesis of self-crosslinking sodium polyacrylate hydrogel and water-absorbing mechanism. J Mater Sci 36(3):731–738. https://doi.org/10.1023/A:1004849210718

    Article  CAS  Google Scholar 

  44. Zohourian MM, Kabiri K (2008) Superabsorbent polymer materials: a review

  45. Zohuriaan-Mehr M (2006) Super-absorbents. Iran Polym Soc Tehran 228:2–4

    Google Scholar 

  46. Mignon A et al (2015) pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. J Mater Sci 50(2):970–979. https://doi.org/10.1007/s10853-014-8657-6

    Article  CAS  Google Scholar 

  47. Krafcik MJ, Macke ND, Erk KA (2017) Improved concrete materials with hydrogel-based internal curing agents. Gels 3(4):46. https://doi.org/10.3390/gels3040046

    Article  CAS  Google Scholar 

  48. Chung D (2004) Use of polymers for cement-based structural materials. J Mater Sci 39(9):2973–2978. https://doi.org/10.1023/B:JMSC.0000025822.72755.70

    Article  CAS  Google Scholar 

  49. Zhu H, Wang Z, Xu J, Han Q (2019) Microporous structures and compressive strength of high-performance rubber concrete with internal curing agent. Constr Build Mater 215:128–134. https://doi.org/10.1016/j.conbuildmat.2019.04.184

    Article  CAS  Google Scholar 

  50. Mönnig S (2009) Superabsorbing additions in concrete: applications, modelling and comparison of different internal water sources, p 57

  51. Jensen OM, Hansen PF (2002) Water-entrained cement-based materials: II. Experimental observations. Cem Concr Res 32(6):973–978. https://doi.org/10.1016/S0008-8846(02)00737-8

    Article  CAS  Google Scholar 

  52. Jensen OM, Hasholt MT, Laustsen S (2010) Use of superabsorbent polymers and other new additives in concrete. DTU Byg, Danmarks Tekniske Universitet, Lyngby

    Google Scholar 

  53. Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226. https://doi.org/10.1016/j.cemconres.2005.03.001

    Article  CAS  Google Scholar 

  54. Lura P, Lothenbach B (2010) Influence of pore solution chemistry on shrinkage of cement paste. In: Miao C, Ye G, Chen H (eds) The 50-year teaching and research anniversary of Prof. Sun Wei on advances in civil engineering materials. RILEM Publications SARL, Vancouver

    Google Scholar 

  55. Craeye B, De Schutter G (2008) Experimental evaluation of mitigation of autogenous shrinkage by means of a vertical dilatometer for concrete. In: Eight international conference on creep, shrinkage and durability mechanics of concrete and concrete structures. CRC Press, Balkema, pp 909–914

  56. Als WSP, Beton ZFH (2005) Water saturated super-absorbent polymers used in high strength concrete. Otto-Graf-Journal 16:193

    Google Scholar 

  57. Jensen OM (2005) Autogenous phenomena in cement-based materials

  58. Lura P, Friedemann K, Stallmach F, Mönnig S, Wyrzykowski M, Esteves LP (2012) Kinetics of water migration in cement-based systems containing superabsobent polymers. In: Mechtcherine V, Reinhardt H (eds) Application of super absorbent polymers (SAP) in concrete construction. Springer, New York, pp 21–37

    Chapter  Google Scholar 

  59. Mechtcherine V, Dudziak L, Schulze J, Staehr H (2006) Internal curing by super absorbent polymers (SAP)—effects on material properties of self-compacting fibre-reinforced high performance concrete. In: International RILEM conference on volume changes of hardening concrete: testing and mitigation, Lyngby, Denmark, pp 87–96. https://doi.org/10.1617/2351580052.010.

  60. Zingg A et al (2008) The microstructure of dispersed and non-dispersed fresh cement pastes—new insight by cryo-microscopy. Cem Concr Res 38(4):522–529. https://doi.org/10.1016/j.cemconres.2007.11.007

    Article  CAS  Google Scholar 

  61. Dudziak L, Mechtcherine V (2008) Mitigation of volume changes of ultra-high performance concrete (UHPC) by using super absorbent polymers. In: Proceedings of the 2nd international symposium on ultra high performance concrete. Kassel University Press, Kassel, pp 425–432

  62. Trtik P et al (2010) Neutron tomography measurements of water release from superabsorbent polymers in cement paste. In: Proceedings of the international conference on material science and 64th RILEM annual week, Aachen, Germany, pp 6–10

  63. Nestle N, Kühn A, Friedemann K, Horch C, Stallmach F, Herth G (2009) Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR. Microporous Mesoporous Mater 125(1–2):51–57. https://doi.org/10.1016/j.micromeso.2009.02.024

    Article  CAS  Google Scholar 

  64. Friedrich S (2012) Superabsorbent polymers (SAP). In: Mechtcherine V, Reinhardt H-W (eds) Application of super absorbent polymers (SAP) in concrete construction. Springer, New York, pp 13–19

    Chapter  Google Scholar 

  65. Lura P, Jensen OM, Igarashi S-I (2007) Experimental observation of internal water curing of concrete. Mater Struct 40(2):211–220. https://doi.org/10.1617/s11527-006-9132-x

    Article  CAS  Google Scholar 

  66. Lura P, Jensen OM, Van Breugel K (2003) Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem Concr Res 33(2):223–232. https://doi.org/10.1016/S0008-8846(02)00890-6

    Article  CAS  Google Scholar 

  67. Weiss J, Lura P, Rajabipour F, Sant G (2008) Performance of shrinkage-reducing admixtures at different humidities and at early ages. ACI Mater J 105(5):478

    Google Scholar 

  68. Wang F, Yang J, Cheng H, Wu J, Liang X (2015) Study on mechanism of desorption behavior of saturated superabsorbent polymers in concrete. ACI Mater J 112(3):463

    Google Scholar 

  69. Wadsö L (1994) Describing non-Fickian water-vapour sorption in wood. J Mater Sci 29(9):2367–2372. https://doi.org/10.1007/BF00363428

    Article  Google Scholar 

  70. Gao D, Heimann R, Lerchner J, Seidel J, Wolf G (2001) Development of a novel moisture sensor based on superabsorbent poly (acrylamide)-montmorillonite composite hydrogels. J Mater Sci 36(18):4567–4571. https://doi.org/10.1023/A:1017971811942

    Article  CAS  Google Scholar 

  71. Friedemann K, Stallmach F, Kärger J (2009) Carboxylates and sulfates of polysaccharides for controlled internal water release during cement hydration. Cement Concr Compos 31(4):244–249

    Article  CAS  Google Scholar 

  72. Bentz DP, Halleck PM, Grader AS, Roberts JW (2006) Four-dimensional X-ray microtomography study of water movement during internal curing. In: Proceedings of the international RILEM conference-volume changes of hardening concrete: testing and mitigation, pp 11–20

  73. Maruyama I, Kanematsu M, Noguchi T, Iikura H, Teramoto A, Hayano H (2009) Evaluation of water transfer from saturated lightweight aggregate to cement paste matrix by neutron radiography. Nucl Instrum Methods Phys Res Sect A 605(1–2):159–162. https://doi.org/10.1016/j.nima.2009.01.138

    Article  CAS  Google Scholar 

  74. Justs J, Wyrzykowski M, Winnefeld F, Bajare D, Lura P (2014) Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio. J Therm Anal Calorim 115(1):425–432. https://doi.org/10.1007/s10973-013-3359-x

    Article  CAS  Google Scholar 

  75. Sarbapalli D, Dhabalia Y, Sarkar K, Bhattacharjee B (2017) Application of SAP and PEG as curing agents for ordinary cement-based systems: impact on the early age properties of paste and mortar with water-to-cement ratio of 0.4 and above. Eur J Environ Civ Eng 21(10):1237–1252. https://doi.org/10.1080/19648189.2016.1160843

    Article  Google Scholar 

  76. Esteves LP, Lukošiūtė I, Čėsnienė J (2014) Hydration of cement with superabsorbent polymers. J Therm Anal Calorim 118(2):1385–1393. https://doi.org/10.1007/s10973-014-4133-4

    Article  CAS  Google Scholar 

  77. Hasholt MT, Jespersen MHS, Jensen OM (2010) Mechanical properties of concrete with SAP part I: development of compressive strength. In: International RILEM conference on use of superabsorbent polymers and other new additives in concrete. RILEM Publications SARL, p 10

  78. Mignon A, Snoeck D, Dubruel P, Van Vlierberghe S, De Belie N (2017) Crack mitigation in concrete: superabsorbent polymers as key to success? Materials 10(3):237. https://doi.org/10.3390/ma10030237

    Article  CAS  Google Scholar 

  79. Ma X, Zhang J, Liu J (2015) Review on superabsorbent polymer as internal curing agent of high performance cement-based material. J Chin Ceram Soc 43(8):1099–1110

    CAS  Google Scholar 

  80. Snoeck D et al (2015) The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments. Cem Concr Res 77:26–35

    Article  CAS  Google Scholar 

  81. Ma X, Liu J, Wu Z, Shi C (2017) Effects of SAP on the properties and pore structure of high performance cement-based materials. Constr Build Mater 131:476–484. https://doi.org/10.1016/j.conbuildmat.2016.11.090

    Article  CAS  Google Scholar 

  82. Tan Y, Chen H, Wang Z, Xue C, He R (2019) Performances of cement mortar incorporating superabsorbent polymer (SAP) using different dosing methods. Materials 12(10):1619. https://doi.org/10.3390/ma12101619

    Article  CAS  Google Scholar 

  83. Lee H, Wong H, Buenfeld N (2016) Self-sealing of cracks in concrete using superabsorbent polymers. Cem Concr Res 79:194–208. https://doi.org/10.1016/j.cemconres.2015.09.008

    Article  CAS  Google Scholar 

  84. Kong X, Zhang Z (2013) Effect of super-absorbent polymer on pore structure of hardened cement paste in high-strength concrete. J Chin Ceram Soc 41(11):1474–1480. https://doi.org/10.7521/j.issn.0454-5648.2013.11.03

    Article  CAS  Google Scholar 

  85. Meddah MS, Tagnit-Hamou A (2009) Pore structure of concrete with mineral admixtures and its effect on self-desiccation shrinkage. ACI Mater J 106(3):241

    CAS  Google Scholar 

  86. Olawuyi BJ, Boshoff WP (2017) Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis. Constr Build Mater 135:580–589. https://doi.org/10.1016/j.conbuildmat.2016.12.128

    Article  CAS  Google Scholar 

  87. Wittmann F (1976) On the action of capillary pressure in fresh concrete. Cem Concr Res 6(1):49–56. https://doi.org/10.1016/0008-8846(76)90050-8

    Article  CAS  Google Scholar 

  88. Sayahi F, Emborg M, Hedlund H (2014) Plastic shrinkage cracking in concrete: state of the art. Nord Concr Res 51:95–110

    Google Scholar 

  89. Saliba J, Rozière E, Grondin F, Loukili A (2011) Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage. Cem Concr Compos 33(2):209–217. https://doi.org/10.1016/j.cemconcomp.2010.10.006

    Article  CAS  Google Scholar 

  90. Steyl L (2016) Plastic cracking of concrete and the effect of depth. Stellenbosch University, Stellenbosch

    Google Scholar 

  91. Dao V, Dux P, Morris P, O’Moore L (2010) Plastic shrinkage cracking of concrete. Aust J Struct Eng 10(3):207–214. https://doi.org/10.1080/13287982.2010.11465045

    Article  Google Scholar 

  92. Neubauer C, Bergstrom T, Sujata K, Xi Y, Garboczi E, Jennings H (1997) Drying shrinkage of cement paste as measured in an environmental scanning electron microscope and comparison with microstructural models. J Mater Sci 32(24):6415–6427. https://doi.org/10.1023/A:1018682404655

    Article  CAS  Google Scholar 

  93. Radocea A (1992) A new method for studying bleeding of cement paste. Cem Concr Res 22(5):855–868. https://doi.org/10.1016/0008-8846(92)90110-H

    Article  CAS  Google Scholar 

  94. Slowik V, Schmidt M, Fritzsch R (2008) Capillary pressure in fresh cement-based materials and identification of the air entry value. Cem Concr Compos 30(7):557–565. https://doi.org/10.1016/j.cemconcomp.2008.03.002

    Article  CAS  Google Scholar 

  95. Dudziak L, Mechtcherine V (2010) Enhancing early-age resistance to cracking in high-strength cement based materials by means of internal curing using super absorbent polymers. RILEM Proc PRO 77:129–139

    Google Scholar 

  96. Rostami R, Klemm AJ (2019) Effect of superabsorbent polymers on plastic shrinkage cracking and properties of fresh state mortars reinforced by polymeric fibres. In: Proceedings of the international conference on sustainable materials, systems and structures (SMSS2019): new generation of construction materials. RILEM, pp 614–621

  97. Meyer D, Boshoff WP, Combrinck R (2020) Utilising super absorbent polymers as alternative method to test plastic shrinkage cracks in concrete. Constr Build Mater 248:118666. https://doi.org/10.1016/j.conbuildmat.2020.118666

    Article  CAS  Google Scholar 

  98. Jensen OM, Hansen PF (2001) Autogenous deformation and RH-change in perspective. Cem Concr Res 31(12):1859–1865. https://doi.org/10.1016/S0008-8846(01)00501-4

    Article  CAS  Google Scholar 

  99. Gowripalan N (2020) Autogenous shrinkage of concrete at early ages. In: Wang CM, Ho JCM, Kitipornchai S (eds) ACMSM25. Springer, New York, pp 269–276

    Chapter  Google Scholar 

  100. Beltzung F, Wittmann F (2001) Early chemical shrinkage due to dissolution and hydration of cement. Mater Struct 34(5):279–283. https://doi.org/10.1007/BF02482207

    Article  CAS  Google Scholar 

  101. Kocaba V, Gallucci E, Scrivener KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42(3):511–525. https://doi.org/10.1016/j.cemconres.2011.11.010

    Article  CAS  Google Scholar 

  102. Nawa T (2005) Autogenous shrinkage of high performance concrete. 대한토목학회 간행물, 36–45

  103. Esteves LP (2009) Internal curing in cement-based materials. Universidade de Aveiro, Portugal

    Google Scholar 

  104. Tu W, Zhu Y, Fang G, Wang X, Zhang M (2019) Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer. Cem Concr Res 116:179–190. https://doi.org/10.1016/j.cemconres.2018.11.018

    Article  CAS  Google Scholar 

  105. Fang G, Tu W, Zhu Y, Zhang M (2018) Autogenous shrinkage of alkali-activated fly ash-slag pastes with and without SAP. In Proceedings of the 4th international conference on service life design for infrastructures. RILEM

  106. Lynam CG (1934) Growth and movement in Portland cement concrete. Oxford University Press, Oxford

    Google Scholar 

  107. Mosaberpanah MA, Eren O, Tarassoly AR (2019) The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. J Mater Res Technol 8(1):804–811. https://doi.org/10.1016/j.jmrt.2018.06.011

    Article  CAS  Google Scholar 

  108. Ullah F, Al-Neshawy F, Punkki J (2018) Early age autogenous shrinkage of fibre reinforced concrete. Nord Concr Res 59(1):59–72

    Article  Google Scholar 

  109. Huang Z-Y, Wang J (2012) Effects of SAP on the Performance of UHPC. Bull Chin Ceram Soc 3:010

    Google Scholar 

  110. Yan P, Cy QW (2015) Shrinkage-reducing measurement of high strength self-compacting concrete, Kuei Suan Jen Hsueh Pao. J Chin Ceram Soc 43(4):363–367

    CAS  Google Scholar 

  111. Ye H, Zhao J, Zhang Y (2003) Superabsorbent polymer as self-curing admixture in cement-based materials. J South China Univ Technol 31(11):41–44

    CAS  Google Scholar 

  112. Igarashi S-I, Watanabe A (2006) Experimental study on prevention of autogenous deformation by internal curing using super-absorbent polymer particles. In: International RILEM conference on volume changes of hardening concrete: testing and mitigation. RILEM Publications SARL, pp 77–86. https://doi.org/10.1617/2351580052.009

  113. Lura P, Durand F, Jensen OM (2006) Autogenous strain of cement pastes with superabsorbent polymers. In: International RILEM conference on volume changes of hardening concrete: testing and mitigation, vol 57. RILEM Publications SARL, p 65

  114. Dudziak L, Mechtcherine V (2009) Reducing the cracking potential of ultra-high performance concrete by using super absorbent polymers (SAP). In: Proceedings of the international conference on advanced concrete materials, pp 17–19

  115. Savva P, Petrou MF (2018) Highly absorptive normal weight aggregates for internal curing of concrete. Constr Build Mater 179:80–88. https://doi.org/10.1016/j.conbuildmat.2018.05.205

    Article  CAS  Google Scholar 

  116. de Sensale GR, Goncalves AF (2014) Effects of fine LWA and SAP as internal water curing agents. Int J Concr Struct Mater 8(3):229–238. https://doi.org/10.1007/s40069-014-0076-1

    Article  CAS  Google Scholar 

  117. Cohen MD, Mobasher B (1988) Drying shrinkage of expansive cements. J Mater Sci 23(6):1976–1980. https://doi.org/10.1007/BF01115759

    Article  CAS  Google Scholar 

  118. Reinhardt H, Mönnig S (2006) Results of comparative study of the shrinkage behaviour of concretes with different internal water sources. In: Proceedings of international RILEM conference on volume changes of hardening concrete: testing and mitigation, pp 20–23

  119. Karbhari V, Engineer M, EckelIi D (1997) On the durability of composite rehabilitation schemes for concrete: use of a peel test. J Mater Sci 32(1):147–156. https://doi.org/10.1023/A:1018591619404

    Article  CAS  Google Scholar 

  120. Wong HS (2018) Concrete with superabsorbent polymer. In: Pacheco-Torgal F, Melchers RE, Shi X, De Belie N, Van Tittelboom K, Sáez A (eds) Eco-efficient repair and rehabilitation of concrete infrastructures. Elsevier, Amsterdam, pp 467–499

    Chapter  Google Scholar 

  121. Snoeck D, Dewanckele J, Cnudde V, De Belie N (2016) X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem Concr Compos 65:83–93. https://doi.org/10.1016/j.cemconcomp.2015.10.016

    Article  CAS  Google Scholar 

  122. Mignon A et al (2015) pH-responsive superabsorbent polymers: a pathway to self-healing of mortar. React Funct Polym 93:68–76. https://doi.org/10.1016/j.reactfunctpolym.2015.06.003

    Article  CAS  Google Scholar 

  123. Snoeck D, Van den Heede P, Van Mullem T, De Belie N (2018) Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem Concr Res 113:86–98. https://doi.org/10.1016/j.cemconres.2018.07.002

    Article  CAS  Google Scholar 

  124. Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  125. Zhu C, Li F, Wang B, Xie Y (2013) Influence of internal curing on crack resistance and hydration of concrete. J Build Mater 16:221–225

    CAS  Google Scholar 

  126. Secrieru E, Mechtcherine V, Schröfl C, Borin D (2016) Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatures. Constr Build Mater 112:581–594. https://doi.org/10.1016/j.conbuildmat.2016.02.161

    Article  CAS  Google Scholar 

  127. Ma X, Yuan Q, Liu J, Shi C (2019) Effect of water absorption of SAP on the rheological properties of cement-based materials with ultra-low w/b ratio. Constr Build Mater 195:66–74. https://doi.org/10.1016/j.conbuildmat.2018.11.050

    Article  CAS  Google Scholar 

  128. Dang J, Zhao J, Du Z (2017) Effect of superabsorbent polymer on the properties of concrete. Polymers 9(12):672. https://doi.org/10.3390/polym9120672

    Article  CAS  Google Scholar 

  129. Hasholt MT, Jensen OM, Kovler K, Zhutovsky S (2012) Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength? Constr Build Mater 31:226–230. https://doi.org/10.1016/j.conbuildmat.2011.12.062

    Article  Google Scholar 

  130. Qin H, Gao M, Pang C-M, Sun W (2011) Research on performance improvement of expansive concrete with internal curing agent SAP and its action mechanism. J Build Mater 14(3):394–399

    CAS  Google Scholar 

  131. Pourjavadi A, Fakoorpoor SM, Khaloo A, Hosseini P (2012) Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles. Mater Des 42:94–101. https://doi.org/10.1016/j.matdes.2012.05.030

    Article  CAS  Google Scholar 

  132. Karthikeyan V, Sabari K, Sasikumar S, Seyatharasan S, Thirumoorthi S (2018) Self-curing concrete by using super absorbent polymer

  133. H. Lam, "Effects of internal curing methods on restrained shrinkage and permeability," 2005.

  134. Piérard J, Pollet V, Cauberg N (2006) Mitigating autogenous shrinkage in HPC by internal curing using superabsorbent polymers. RILEM Proc. PRO 52:97–106

    Google Scholar 

  135. Lura P, Durand F, Loukili A, Kovler K, Jensen OM (2006) Compressive strength of cement pastes and mortars with superabsorbent polymers. In: Proceedings of the international RILEM conference on volume changes of hardening concrete: testing and mitigation. Rilem Publications SARL Lyngby, pp 117–125

  136. Mechtcherine V, Dudziak L, Hempel S (2009) Mitigating early age shrinkage of ultra-high performance concrete by using super absorbent polymers (SAP). Creep, shrinkage and durability mechanics of concrete and concrete structures—CONCREEP-8. In: Tanabe T et al (eds) Proceedings of 8th international conference. Taylor & Francis Group, London, pp 847–853

  137. Larianovsky P (2007) Internal curing of concrete using super-absorbent polymers. M.Sc. thesis, Technion-Israel Institute of Technology, Haifa

  138. Sanjuán M, Muñoz-Martialay R (1995) Influence of the age on air permeability of concrete. J Mater Sci 30(22):5657–5662. https://doi.org/10.1007/BF00356701

    Article  Google Scholar 

  139. Liu R et al (2018) Effects of nano-SiO2 on the permeability-related properties of cement-based composites with different water/cement ratios. J Mater Sci 53(7):4974–4986. https://doi.org/10.1007/s10853-017-1906-8

    Article  CAS  Google Scholar 

  140. Liu R, Xiao H, Liu J, Guo S, Pei Y (2019) Improving the microstructure of ITZ and reducing the permeability of concrete with various water/cement ratios using nano-silica. J Mater Sci 54(1):444–456. https://doi.org/10.1007/s10853-018-2872-5

    Article  CAS  Google Scholar 

  141. Snoeck D, Steuperaert S, Van Tittelboom K, Dubruel P, De Belie N (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem Concr Res 42(8):1113–1121. https://doi.org/10.1016/j.cemconres.2012.05.005

    Article  CAS  Google Scholar 

  142. Hasholt MT, Jensen OM (2015) Chloride migration in concrete with superabsorbent polymers. Cem Concr Compos 55:290–297. https://doi.org/10.1016/j.cemconcomp.2014.09.023

    Article  CAS  Google Scholar 

  143. Beushausen H, Gillmer M, Alexander M (2014) The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cem Concr Compos 52:73–80. https://doi.org/10.1016/j.cemconcomp.2014.03.008

    Article  CAS  Google Scholar 

  144. Graf H, Grube H (1986) Verfahren zur Prüfung der Durchlässigkeit von Mörtel und Beton gegenüber Gasen und Wasser. Beton 6:222–226

    Google Scholar 

  145. Mönnig S, Lura P (2007) Superabsorbent polymers—an additive to increase the freeze-thaw resistance of high strength concrete. In: Grosse CU (ed) Advances in construction materials 2007. Springer, New York, pp 351–358

    Chapter  Google Scholar 

  146. Hasholt MT, Jensen OM, Laustsen S (2015) Superabsorbent polymers as a means of improving frost resistance of concrete. Adv Civ Eng Mater 4(1):237–256

    CAS  Google Scholar 

  147. Jones WA, Weiss WJ (2014) Freeze thaw durability of internally cured concrete made using superabsorbent polymers. https://doi.org/10.5703/1288284315376

  148. Assmann A (2013) Physical properties of concrete modified with superabsorbent polymers

  149. Reinhardt H-W, Assmann A (2012) Effect of superabsorbent polymers on durability of concrete. In: Mechtcherine V, Reinhardt H-W (eds) Application of super absorbent polymers (SAP) in concrete construction. Springer, New York, pp 115–135

    Chapter  Google Scholar 

  150. Lura P, Ye G, Cnudde V, Jacobs P (2008) Preliminary results about 3D distribution of superabsorbent polymers in mortars. In: Proceedings of the international conference on microstructure related durability of cementitious composites, Nanjing, China, pp 13–15

  151. Snoeck D, Schaubroeck D, Dubruel P, De Belie N (2014) Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr Build Mater 72:148–157. https://doi.org/10.1016/j.conbuildmat.2014.09.012

    Article  Google Scholar 

  152. Lee H, Wong H, Buenfeld N (2010) Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv Appl Ceram 109(5):296–302. https://doi.org/10.1179/174367609X459559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AD was involved in conceptualization, investigation, methodology, original draft composition, and editing. MAM was involved in conceptualization, investigation, methodology, review and editing. MUS was involved in investigation, methodology, original draft composition, and editing.

Corresponding author

Correspondence to Aamar Danish.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danish, A., Mosaberpanah, M.A. & Salim, M.U. Robust evaluation of superabsorbent polymers as an internal curing agent in cementitious composites. J Mater Sci 56, 136–172 (2021). https://doi.org/10.1007/s10853-020-05131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05131-2

Navigation