Skip to main content
Log in

Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since the silk fibroin is a precious material widely used in various fields, the discarded silk textile is a profound waste in resource-constrained settings. In this paper, with recyclability in mind, we selected waste silk from discarded silk quilt to make the regenerated silk fibroin (RSF) aqueous solutions. Mixing with water-soluble polyvinyl alcohol (PVA), the RSF/PVA blended solutions were made as a spinning dope for preparing the regenerated fibers. To optimize the parameters during the spinning process, we used the rheological measurement firstly to investigate the fundamental characters of solutions with various blending ratios and the effect of temperature on solutions. The results showed the RSF/PVA blended aqueous solutions were non-Newtonian fluids, and the apparent viscosity rose with the increasing PVA contents in co-solutions and decreased with the growth of the shear rate. The blending ratio had a certain influence on the viscoelasticity of co-solutions, the more the percentage of PVA, the higher the value of the viscoelasticity of co-solutions would be, and the co-solution with blending ratio of 6:4 (RSF:PVA) showed the greatest influence on storage modulus, while the solutions with more RSF exhibited more effect on loss modulus. Too much PVA content or too high RSF proportion in solutions was unfavorable to spinning. What’s more, the co-solutions with RSF content less than 40% had the most similar morphological structural systems, and the co-solutions containing more than 20% PVA had narrow distribution, linear and high molecular weight. For preventing protein denaturation, the temperature should not be higher than around 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Gulrajani ML (2008) Degumming of silk. Color Technol 22(1):79–89. https://doi.org/10.1111/j.1478-4408.1992.tb00091.x

    Article  Google Scholar 

  2. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013

    Article  CAS  Google Scholar 

  3. T Luong T-H, Dang T-NN, Ngoc OPT, Dinh-Thuy T-H, Nguyen T-H, Van Toi V, Duong HT, Le Son H (2015) Investigation of the silk fiber extraction process from the vietnam natural bombyx mori silkworm cocoon. 46:325-328. https://doi.org/10.1007/978-3-319-11776-8_79

  4. Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110. https://doi.org/10.1016/j.progpolymsci.2015.02.001

    Article  CAS  Google Scholar 

  5. Ling S, Kaplan DL, Buehler MJ (2018) Nanofibrils in nature and materials engineering. Nature Rev Mater. https://doi.org/10.1038/natrevmats.2018.16

    Article  Google Scholar 

  6. Huang W, Ling S, Li C, Omenetto FG, Kaplan DL (2018) Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 47(17):6486–6504. https://doi.org/10.1039/c8cs00187a

    Article  CAS  Google Scholar 

  7. Jiang H, Zheng L, Zou Y, Tong Z, Han S, Wang S (2019) 3D food printing: main components selection by considering rheological properties. Crit Rev Food Sci Nutr 59(14):2335–2347. https://doi.org/10.1080/10408398.2018.1514363

    Article  CAS  Google Scholar 

  8. Zheng K, Zhong J, Qi Z, Ling S, Kaplan DL (2018) Isolation of silk mesostructures for electronic and environmental applications. Adv Func Mater 28(51):1806380. https://doi.org/10.1002/adfm.201806380

    Article  CAS  Google Scholar 

  9. Guo J, Li C, Ling S, Huang W, Chen Y, Kaplan DL (2017) Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 145:44–55. https://doi.org/10.1016/j.biomaterials.2017.08.025

    Article  CAS  Google Scholar 

  10. Guo J, Ling S, Li W, Chen Y, Li C, Omenetto FG, Kaplan DL (2018) Coding cell micropatterns through peptide inkjet printing for arbitrary biomineralized architectures. Adv Funct Mater 28(19):1800228. https://doi.org/10.1002/adfm.201800228

    Article  CAS  Google Scholar 

  11. Yalcin-Enis I, Kucukali-Ozturk M, Sezgin H (2019) Risks and management of textile waste. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience and biotechnology for environmental applications. Springer, Cham, pp 29–53. https://doi.org/10.1007/978-3-319-97922-9_2

  12. Pensupa N, Leu SY, Hu Y, Du C, Liu H, Jing H, Wang H, Lin CSK (2017) Recent trends in sustainabletextile waste recycling methods: current situation and future prospects. Top Curr Chem (Cham) 375(5):76. https://doi.org/10.1007/s41061-017-0165-0

    Article  CAS  Google Scholar 

  13. Liu Y, Ren J, Ling S (2019) Bioinspired and biomimetic silk spinning. Compos Commun 13:85–96. https://doi.org/10.1016/j.coco.2019.03.004

    Article  Google Scholar 

  14. Lu L, Fan S, Niu Q, Peng Q, Geng L, Yang G, Shao H, Hsiao BS, Zhang Y (2019) Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip. ACS Sustain Chem Eng 7(17):14765–14774. https://doi.org/10.1021/acssuschemeng.9b02713

    Article  CAS  Google Scholar 

  15. Keirouz A, Zakharova M, Kwon J, Robert C, Koutsos V, Callanan A, Chen X, Fortunato G, Radacsi N (2020) High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.110939

    Article  Google Scholar 

  16. Zhang J, Allardyce BJ, Rajkhowa R, Zhao Y, Dilley RJ, Redmond SL, Wang X, Liu X (2018) 3D Printing of silk particle-reinforced chitosan hydrogel structures and their properties. ACS Biomater Sci Eng 4(8):3036–3046. https://doi.org/10.1021/acsbiomaterials.8b00804

    Article  CAS  Google Scholar 

  17. Ahadi F, Khorshidi S, Karkhaneh A (2019) A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride. Eur Polym J 118:265–274. https://doi.org/10.1016/j.eurpolymj.2019.06.001

    Article  CAS  Google Scholar 

  18. Cates DM, White HJ (1956) Preparation and properties of fibers containing mixed polymers. III. Polyacrylonitrile: silk fibers. J Polym Sci Part A Polym Chem 21(97):125–138. https://doi.org/10.1002/pol.1956.120219711

    Article  CAS  Google Scholar 

  19. Chen Z, Suzuki M, Kimura M, Kondo Y, Hanabusa K, Shirai H (2004) Synthesis and characterization of spinning poly(acrylonitrile-co-silk fibroin peptide)s. J Appl Polym Sci 92:1540–1547. https://doi.org/10.1002/app.20092

    Article  CAS  Google Scholar 

  20. Liu Q, Meng Z, Wu R, Ma L, Qiu W, Zhang H, Zhu S, Kong L, Xu Z, Patil A, Liu X (2019) A novel facile and green synthesis protocol to prepare high strength regenerated silk fibroin/SiO2 composite fiber. Fibers Polym 20(10):2222–2226. https://doi.org/10.1007/s12221-019-9120-8

    Article  CAS  Google Scholar 

  21. Hu X, Li J, Bai Y (2017) Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning. Mater Lett 194:224–226. https://doi.org/10.1016/j.matlet.2017.02.057

    Article  CAS  Google Scholar 

  22. Li X, Ming J, Ning X (2018) Wet-spun conductive silk fibroin–polyaniline filaments prepared from a formic acid–shell solution. J Appl Polym Sci 136(9):47127. https://doi.org/10.1002/app.47127

    Article  CAS  Google Scholar 

  23. Lu Y, Jiang J, Park S, Wang D, Piao L, Kim J (2020) Wet-spinning fabrication of flexible conductive composite fibers from silver nanowires and fibroin. Bull Korean Chem Soc 41(2):162–169. https://doi.org/10.1002/bkcs.11945

    Article  CAS  Google Scholar 

  24. Fang G, Huang Y, Tang Y, Qi Z, Yao J, Shao Z, Chen X (2016) Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater Sci Eng 2(11):1992–2000. https://doi.org/10.1021/acsbiomaterials.6b00392

    Article  CAS  Google Scholar 

  25. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE, (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20. https://doi.org/10.1016/s0168-3659(00)00339-4

    Article  CAS  Google Scholar 

  26. Bian Y, Wang R, Ting SH, Chen C, Zhang L (2018) Electrospun SF/PVA nanofiber filters for highly efficient PM 2.5 capture. IEEE Trans Nanotechnol 17(5):934–939. https://doi.org/10.1109/tnano.2018.2824343

    Article  CAS  Google Scholar 

  27. Li J, Gao F, Liu LQ, Zhang Z (2013) Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett 7(8):683–689. https://doi.org/10.3144/expresspolymlett.2013.65

    Article  CAS  Google Scholar 

  28. Cross MM (1965) Rheology of non Newtonian fluids a new flow equation for pseudoplastic systems. J Colloid Sci 20:417–437. https://doi.org/10.1016/0095-8522(65)90022-X

    Article  CAS  Google Scholar 

  29. Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417–437. https://doi.org/10.1016/0095-8522(65)90022-X

    Article  CAS  Google Scholar 

  30. Sisko AW (1958) The flow of lubricating greases. Ind Eng Chem 50(12):1789–1792. https://doi.org/10.1021/ie50588a042

    Article  CAS  Google Scholar 

  31. Boyd J, Buick JM, Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys Fluids 19(9):093103. https://doi.org/10.1063/1.2772250

    Article  CAS  Google Scholar 

  32. Utracki LA, Kamal MR (1982) Melt flow of polymer blend. Polym Eng Sci 22(2):96–114. https://doi.org/10.1002/pen.760220211

    Article  Google Scholar 

  33. Utracki LA, Wilkie CA (2002) Polymer blends handbook, vol 1., pp 171–289. https://doi.org/10.1007/0-306-48244-4

    Book  Google Scholar 

  34. Yao Y, Mukuze KS, Zhang Y, Wang H (2013) Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose 21(1):675–684. https://doi.org/10.1007/s10570-013-0117-y

    Article  CAS  Google Scholar 

  35. Han CD, Kim JK (1993) On the use of time-temperature superposition in multicomponent/ multiphase polymer systems. Polymer 34(12):2533–2539. https://doi.org/10.1016/0032-3861(93)90585-X

    Article  CAS  Google Scholar 

  36. Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order-disorder transition temperature of polystyrene-block-polyisoprene-block-polystyrene copolymers. Macromolecules 23(2):561–570. https://doi.org/10.1021/ma00204a032

    Article  CAS  Google Scholar 

  37. Li Y, Liu X, Zhuang X, Jin X, Liu Q (2016) Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers Polym 17(5):778–788. https://doi.org/10.1007/s12221-016-5578-9

    Article  CAS  Google Scholar 

  38. Yasuda K, Armstrong RC, Cohen RE (1980) Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol Acta 20(2):163–178. https://doi.org/10.1007/bf01513059

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis and the first draft of manuscript writing were performed by Xin Zhang. Zhijuan Pan proofread and approved the final manuscript.

Corresponding author

Correspondence to Zhijuan Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Pan, Z. Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature. J Mater Sci 55, 15350–15363 (2020). https://doi.org/10.1007/s10853-020-05086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05086-4

Navigation