Skip to main content

Advertisement

Log in

Ultrasmall SnO2 nanocrystals with adjustable density embedded in N-doped hollow mesoporous carbon spheres as anode for Li+/Na+ batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SnO2 has been widely studied in lithium-ion batteries (LIBs) because of its high theoretical specific capacity and reversible alloying reaction. Herein, we reported a novel strategy of confinement growth to implant nano-sized SnO2 crystals into N-doped hollow mesoporous carbon spheres (NHMCS) to form SnO2@NHMCS composite with unique nanoscale voids. The nanocrystals (~ 5 nm) decrease the required activation energy for redox reactions, and the carbon shell of NHMCS improves the conductivity and structural stability. It is worth noting that this method can effectively control the filling degree of ultrasmall nanocrystals in NHMCS and adjust the nanosize of voids between nanocrystals and NHMCS. When SnO2@NHMCS is evaluated as an anode material for LIBs, it is proved to exhibit high reversible capacity and stable cycling performance, which is attributted to the appropriate content of active components and the ample buffer space for conversion reaction of SnO2 and alloying reaction of Sn. It also shows excellent electrochemical property as anode material for sodium-ion batteries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  Google Scholar 

  2. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    CAS  Google Scholar 

  3. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    CAS  Google Scholar 

  4. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607

    Google Scholar 

  5. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    CAS  Google Scholar 

  6. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    CAS  Google Scholar 

  7. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    CAS  Google Scholar 

  8. Cheng FY, Liang J, Tao ZL, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715

    CAS  Google Scholar 

  9. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691–714

    CAS  Google Scholar 

  10. Hu M, Pang XL, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242

    CAS  Google Scholar 

  11. Wu H, Yu GH, Pan LJ, Liu NA, McDowell MT, Bao ZA, Cui Y (2013) Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:6

    Google Scholar 

  12. Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    CAS  Google Scholar 

  13. Walter M, Zund T, Kovalenko MV (2015) Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20):9158–9163

    CAS  Google Scholar 

  14. Zhang X, Zhao RF, Wu QH, Li WL, Shen C, Ni LB, Yan H, Diao GW, Chen M (2017) Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8):8429–8436

    CAS  Google Scholar 

  15. Wu QH, Zhao RF, Zhang X, Li WL, Xu RH, Diao GW, Chen M (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16

    CAS  Google Scholar 

  16. Zhang L, Li QY, Xue HG, Pang H (2018) Fabrication of Cu2O-based materials for lithium-ion batteries. Chemsuschem 11(10):1581–1599

    CAS  Google Scholar 

  17. Yang XP, Liu XW, Wang Y, Liu XH, Kong Z, Fu AP, Li YH, Guo PZ, Li HL, Song GJ (2019) Spray-assisted synthesis of MnO@C/graphene composites as electrode materials for supercapacitors. Energy Technol 7(6):9

    CAS  Google Scholar 

  18. Xia L, Wang SQ, Liu GX, Ding LX, Li DD, Wang HH, Qiao SZ (2016) Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7):853–859

    CAS  Google Scholar 

  19. Liang J, Yu XY, Zhou H, Wu HB, Ding SJ, Lou XW (2014) Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem-Int Edit 53(47):12803–12807

    CAS  Google Scholar 

  20. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan HY, Qi LA, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010):1515–1520

    CAS  Google Scholar 

  21. Su DW, Wang CY, Ahn H, Wang GX (2013) Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys Chem Chem Phys 15(30):12543–12550

    CAS  Google Scholar 

  22. Zhao MM, Zhao QX, Qiu JQ, Xue HG, Pang H (2016) Tin-based nanomaterials for electrochemical energy storage. RSC Adv 6(98):95449–95468

    CAS  Google Scholar 

  23. Chang LM, Yi Z, Wang ZM, Wang LM, Cheng Y (2019) Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage. Appl Surf Sci 484:646–654

    CAS  Google Scholar 

  24. Bian HD, Zhang J, Yuen MF, Kang WP, Zhan YW, Yu DYW, Xu ZT, Li YY (2016) Anodic nanoporous SnO2 grown on Cu foils as superior binder-free Na-ion battery anodes. J Power Sources 307:634–640

    CAS  Google Scholar 

  25. Lee SY, Park KY, Kim WS, Yoon S, Hong SH, Kang K, Kim M (2016) Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy 19:234–245

    CAS  Google Scholar 

  26. Liang TT, Liu XH, Liu XW, Guan XG, Wang C, Fu AP, Li YH, Guo PZ, Li HL (2018) Carbon/Li4Ti5O12 composite spheres prepared using chinese yam as carbon source with ultrahigh capacity as anode materials for lithium ion batteries. Energy Technol 6(10):2036–2044

    CAS  Google Scholar 

  27. Tian QH, Zhang F, Yang L, Chen P (2019) Double-shelled nanostructure of SnO2@C tube-in-SnO2@C tube boosts lithium-ion storage. Energy Technol 7(4):9

    Google Scholar 

  28. Jiang BB, He YJ, Li B, Zhao SQ, Wang S, He YB, Lin ZQ (2017) Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew Chem-Int Edit 56(7):1869–1872

    CAS  Google Scholar 

  29. Guan C, Wang XH, Zhang Q, Fan ZX, Zhang H, Fan HJ (2014) Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett 14(8):4852–4858

    CAS  Google Scholar 

  30. Liu DD, Kong Z, Liu XH, Fu AP, Wang YQ, Guo YG, Guo PZ, Li HL, Zhao XS (2018) Spray-drying-induced assembly of skeleton-structured SnO2/graphene composite spheres as superior anode materials for high performance lithium-ion batteries. ACS Appl Mater Interfaces 10(3):2515–2525

    CAS  Google Scholar 

  31. Liu XW, Zhong XW, Yang ZZ, Pan FS, Gu L, Yu Y (2015) Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries. Electrochim Acta 152:178–186

    CAS  Google Scholar 

  32. Zhao KN, Zhang L, Xia R, Dong YF, Xu WW, Niu CJ, He L, Yan MY, Qu LB, Mai LQ (2016) SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12(5):588–594

    CAS  Google Scholar 

  33. Qin J, Zhao NQ, Shi CS, Liu EZ, He F, Ma LY, Li QY, Li JJ, He CN (2017) Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 5(22):10946–10956

    CAS  Google Scholar 

  34. Liu YH, Fang X, Ge MY, Rong JP, Shen CF, Zhang AY, Enaya HA, Zhou CW (2015) SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy 16:399–407

    CAS  Google Scholar 

  35. Wang Y, Su DW, Wang CY, Wang GX (2013) SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun 29:8–11

    CAS  Google Scholar 

  36. Fuertes AB, Valle-Vigon P, Sevilla M (2012) One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem Commun 48(49):6124–6126

    CAS  Google Scholar 

  37. Li WL, Zhao RF, Zhou KH, Shen C, Zhang X, Wu HY, Ni LB, Yan H, Diao GW, Chen M (2019) Cage-structured MxPy@CNCs (M=Co and Zn) from MOF confined growth in carbon nanocages for superior lithium storage and hydrogen evolution performance. J Mater Chem A 7(14):8443–8450

    CAS  Google Scholar 

  38. Luz I, Soukri M, Lail M (2017) Confining metal-organic framework nanocrystals within mesoporous materials: a general approach via “solid-state” synthesis. Chem Mater 29(22):9628–9638

    CAS  Google Scholar 

  39. Chen ZL, Wu RB, Liu M, Wang H, Xu HB, Guo YH, Song Y, Fang F, Yu XB, Sun DL (2017) General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv Funct Mater 27(38):13

    Google Scholar 

  40. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893

    CAS  Google Scholar 

  41. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255

    CAS  Google Scholar 

  42. Zhao YY, Zhang YC, Li J, Chen Y (2014) Solvothermal synthesis of nonmetals-modified SnO2 nanoparticles with high visible-light-activated photocatalytic activity in the reduction of aqueous Cr(VI). Sep Purif Technol 129:90–95

    CAS  Google Scholar 

  43. Fan L, Yang L, Ni XY, Han J, Guo R, Zhang CF (2016) Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 107:629–637

    CAS  Google Scholar 

  44. Chen M, Shen X, Chen KY, Wu QH, Zhang PF, Zhang XE, Diao GW (2016) Nitrogen-doped mesoporous carbon-encapsulation urchin-like Fe3O4 as anode materials for high performance li-ions batteries. Electrochim Acta 195:94–105

    CAS  Google Scholar 

  45. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261

    CAS  Google Scholar 

  46. Deng D, Lee JY (2008) Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem Mater 20(5):1841–1846

    CAS  Google Scholar 

  47. Wang Y, Su FB, Lee JY, Zhao XS (2006) Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage. Chem Mater 18(5):1347–1353

    CAS  Google Scholar 

  48. Liang JF, Wei W, Zhong D, Yang QL, Li LD, Guo L (2012) One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 4(1):454–459

    CAS  Google Scholar 

  49. Wang LP, Leconte Y, Feng Z, Wei C, Zhao Y, Ma Q, Xu W, Bourrioux S, Azais P, Srinivasan M, Xu ZJ (2017) Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv Mater 29(6):1603286. https://doi.org/10.1002/adma.201603286

    Article  CAS  Google Scholar 

  50. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat Mater 12(6):518–522

    CAS  Google Scholar 

  51. Hu RZ, Chen DC, Waller G, Ouyang YP, Chen Y, Zhao BT, Rainwater B, Yang CH, Zhu M, Liu ML (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 9(2):595–603

    CAS  Google Scholar 

  52. Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2(2):529–534

    CAS  Google Scholar 

  53. Gu M, Kushima A, Shao YY, Zhang JG, Liu J, Browning ND, Li J, Wang CM (2013) Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett 13(11):5203–5211

    CAS  Google Scholar 

  54. Xie XQ, Chen SQ, Sun B, Wang CY, Wang GX (2015) 3D networked tin oxide/graphene aerogel with a hierarchically porous architecture for high-rate performance sodium-ion batteries. Chemsuschem 8(17):2948–2955

    CAS  Google Scholar 

Download references

Acknowledgements

The funding support from the “Qinglan project” of Jiangsu Province (2018-12) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Qian, C., Zhang, X. et al. Ultrasmall SnO2 nanocrystals with adjustable density embedded in N-doped hollow mesoporous carbon spheres as anode for Li+/Na+ batteries. J Mater Sci 55, 14464–14476 (2020). https://doi.org/10.1007/s10853-020-05039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05039-x

Navigation