Skip to main content
Log in

Radiation-induced absorption and photobleaching in erbium Al–Ge-codoped optical fiber

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we analyze the absorption spectra of silica fibers doped with erbium (Er) and usual codoping atoms such as aluminum (Al) and germanium (Ge). This study is performed in the 400 nm to 1000 nm wavelength range. We describe and identify relations between the optical fiber composition and the changes in their absorption spectra after two consecutive processes: a 300-Gy gamma irradiation and then after photobleaching obtained with a 980 nm laser light. Among the results we obtained, we want to emphasize that the creation of Al-related defects, known to be the main origin of radio-darkening in aluminosilicate fibers, depends also on the Al/Er ratio. We also identify a new Al originated trap, different from Al-OHC and not referenced in the existing scientific literature to our knowledge. Its contribution to the RIA seems to be really significant. Moreover, photobleaching appears to be a possible recovery mechanism as the Al-colored centers vanish under 980 nm laser light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rose TS, Gunn D, Valley GC (2001) Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements. J Lightwave Technol 19(12):1918

    Article  CAS  Google Scholar 

  2. Fernandez AF, Berghmans F, Brichard B, Borgermans P, Gusarov A, Van Uffelen M, Mégret P, Decréton M, Blondel M, Delchambre A (2001) Radiation-resistant WDM optical link for thermonuclear fusion reactor instrumentation. IEEE Trans Nucl Sci 48(5):1708

    Google Scholar 

  3. Caplan D, Stevens M, Robinson B (2009) In: ECOC

  4. Zotov KV, Likhachev ME, Tomashuk AL, Bubnov MM, Yashkov MV, Gur’yanov AN (2007) Radiation-resistant erbium-doped silica fibre. Quant Electr 37(10):946

    Article  CAS  Google Scholar 

  5. Girard S, Laurent A, Vivona M, Marcandella C, Robin T, Cadier B, Boukenter A, Ouerdane Y (2011). Fiber lasers VIII: technology, systems, and applications, vol 7914 (International Society for Optics and Photonics, 2011), vol 7914, p 79142P

  6. Zotov K, Likhachev M, Tomashuk A, Bubnov M, Yashkov M, Guryanov A, Klyamkin S (2007) In: 2007 9th European conference on radiation and its effects on components and systems, (IEEE, 2007), pp 1–4

  7. Evans B, Sigel G (1975) Radiation resistant fiber optic materials and waveguides. IEEE Trans Nucl Sci 22(6):2462

    Article  Google Scholar 

  8. Vivona M, Girard S, Marcandella C, Robin T, Cadier B, Cannas M, Boukenter A, Ouerdane Y (2011) Influence of Ce codoping and H2 pre-loading on Er/Yb-doped fiber: radiation response characterized by confocal micro-luminescence. J Non-Cryst Solids 357(8–9):1963

    Article  CAS  Google Scholar 

  9. Friebele E (1975) Radiation protection of fiber optic materials: effect of cerium doping on the radiation-induced absorption. Appl Phys Lett 27(4):210

    Article  CAS  Google Scholar 

  10. Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y (2012) Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Opt Express 20(8):8457

    Article  CAS  Google Scholar 

  11. Dardaillon R, Thomas J, Myara M, Blin S, Pastouret A, Gonnet C, Signoret P (2017) Broadband radiation-resistant erbium-doped optical fibers for space applications. IEEE Trans Nucl Sci 64(6):1540

    CAS  Google Scholar 

  12. Thomas J, Myara M, Troussellier L, Burov E, Pastouret A, Boivin D, Mélin G, Gilard O, Sotom M, Signoret P (2012) Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications. Opt Express 20(3):2435

    Article  CAS  Google Scholar 

  13. Leon M, Lancry M, Ollier N (2016) Ge-and Al-related point defects generated by gamma irradiation in nanostructured erbium-doped optical fiber preforms. J Mater Sci 51(22):10245. https://doi.org/10.1007/s10853-016-0253-5

    Article  CAS  Google Scholar 

  14. Neustruev V (1994) Colour centres in germanosilicate glass and optical fibres. J Phys Condens Matter 6(35):6901

    Article  CAS  Google Scholar 

  15. Hosono H, Mizuguchi M, Kawazoe H, Nishii J (1996) Correlation between Ge E’ centers and optical absorption bands in SiO2: GeO2 glasses. Jpn J Appl Phys 35(2B):L234

    Article  CAS  Google Scholar 

  16. Friebele EJ, Schultz PC, Gingerich ME (1980) Compositional effects on the radiation response of Ge-doped silica-core optical fiber waveguides. Appl Opt 19(17):2910

    Article  CAS  Google Scholar 

  17. Buscarino G (2007) Experimental investigation on the microscopic structure of intrinsic paramagnetic point defects in amorphous silicon dioxide. Ph.D. thesis, Univ. Palermo

  18. Girard S, Kuhnhenn J, Gusarov A, Brichard B, Van Uffelen M, Ouerdane Y, Boukenter A, Marcandella C (2013) Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans Nucl Sci 60(3):2015

    Article  CAS  Google Scholar 

  19. Girard S, Alessi A, Richard N, Martin-Samos L, De Michele V, Giacomazzi L, Agnello S, Di Francesca D, Morana A, Winkler B et al (2019) Overview of radiation induced point defects in silica-based optical fibers. Rev Phys 4:100032

    Article  Google Scholar 

  20. Pastouret A, Gonnet C, Collet C, Cavani O, Burov E, Chaneac C, Carton A, Jolivet J (2009) Fiber lasers VI: technology, systems, and applications, vol 7195 (International Society for Optics and Photonics, 2009), vol 7195, p 71951X

  21. Skuja L (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non-Cryst Solids 239(1–3):16

    Article  CAS  Google Scholar 

  22. Hehlen B, Neuville D (2015) Raman response of network modifier cations in alumino-silicate glasses. J Phys Chem B 119(10):4093

    Article  CAS  Google Scholar 

  23. Nunes EHM, Lameiras FS (2005) The optical absorption of gamma irradiated and heat-treated natural quartz. Mater Res 8(3):305

    Article  CAS  Google Scholar 

  24. Dardaillon R, Palermo M, Lancry C, Kribitch RK, Myara M, Signoret P (2020) Accurate modeling of radiation-induced absorption in Er-Al-doped silica fibers exposed to high-energy ionizing radiations. Opt Express 28:4694–4707

    Article  Google Scholar 

  25. Mebrouk Y, Mady F, Benabdesselam M, Duchez JB, Blanc W (2014) Experimental evidence of Er 3+ ion reduction in the radiation-induced degradation of erbium-doped silica fibers. Opt Lett 39(21):6154

    Article  Google Scholar 

  26. Koyama T, Dohguchi N, Ohki Y, Nishikawa H, Kusama Y, Seguchi T (1995) JAERI-Conf 542–546

  27. Woen DH, Evans WJ (2016) Handbook on the physics and chemistry of rare earths, vol 50. Elsevier, Amsterdam, pp 337–394

    Google Scholar 

  28. Wang R, Saito K, Ikushima A (2006) Distributions of self-trapped hole continuums in silica glass. J Appl Phys 100(1):013706

    Article  Google Scholar 

  29. Peng TS, Huang YW, Wang LA, Liu RY, Chou FT (2009) 20th international conference on optical fibre sensors, vol 7503 (International Society for Optics and Photonics, 2009), vol 7503, p 750375

  30. Neuville DR, Cormier L, Montouillout V, Florian P, Millot F, Rifflet JC, Massiot D (2008) Structure of Mg-and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations. Am Mineralog 93(11–12):1721

    Article  CAS  Google Scholar 

  31. Hanada T, Soga N (1982) Coordination and bond character of silicon and aluminum ions in amorphous thin films in the system SiO2-Al2O3. J Am Ceram Soc 65(6):c84

    Article  CAS  Google Scholar 

  32. Poe BT, McMillan PF, Angell CA, Sato R (1992) Al and Si coordination in SiO2 1bAl2O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem Geol 96(3–4):333

    Article  CAS  Google Scholar 

  33. Morikawa H, MIWA SI, Miyake M, Marumo F, Sata T (1982) Structural analysis of SiO2-Al2O3 glasses. J Am Ceram Soc 65(2):78

    Article  CAS  Google Scholar 

  34. Lagomacini JC, Bravo D, Martín A, López FJ, Martín P, Ibarra Á (2014) Growth kinetics of AIOHC defects in \(\gamma\)-irradiated silica glasses. J Non-Cryst Solids 403:5

    Article  CAS  Google Scholar 

  35. Jani M, Bossoli R, Halliburton L (1983) Further characterization of the E 1’ center in crystalline Si O 2. Phys Rev B 27(4):2285

    Article  CAS  Google Scholar 

  36. Alessi A, Girard S, Cannas M, Agnello S, Boukenter A, Ouerdane Y (2011) Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing. Opt Express 19(12):11680

    Article  CAS  Google Scholar 

  37. Yamaguchi M, Saito K, Ikushima A (2003) Fictive-temperature-dependence of photoinduced self-trapped holes in a—SiO 2. Phys Rev B 68(15):153204

    Article  Google Scholar 

  38. Griscom DL (2006) Self-trapped holes in pure-silica glass: a history of their discovery and characterization and an example of their critical significance to industry. J Non-Cryst Solids 352(23–25):2601

    Article  CAS  Google Scholar 

  39. Pukhkaya V, Charpentier T, Ollier N (2013) Study of formation and sequential relaxation of paramagnetic point defects in electron-irradiated Na-aluminosilicate glasses: influence of Yb. J Non-Cryst Solids 364:1

    Article  CAS  Google Scholar 

  40. Rybaltovsky A, Bobkov K, Velmiskin V, Umnikov A, Shestakova I, Guryanov A, Likhachev M, Bubnov M, Dianov E (2014) Fiber lasers XI: technology, systems, and applications, vol 8961 (International Society for Optics and Photonics, 2014), vol 8961, p 896116

  41. Wang S, Lou F, Yu C, Zhou Q, Wang M, Feng S, Chen D, Hu L, Chen W, Guzik M et al (2014) Influence of Al 3+ and P 5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al 3+ and P 5+ ions on Yb 3+ ions in silica glass. J Mater Chem C 2(22):4406

    Article  Google Scholar 

  42. Monteil A, Chaussedent S, Alombert-Goget G, Gaumer N, Obriot J, Ribeiro SJ, Messaddeq Y, Chiasera A, Ferrari M (2004) Clustering of rare earth in glasses, aluminum effect: experiments and modeling. J Non-Cryst Solids 348:44

    Article  CAS  Google Scholar 

  43. Gusarov A, Van Uffelen M, Hotoleanu M, Thienpont H, Berghmans F (2009) Radiation sensitivity of EDFAs based on highly Er-doped fibers. J Lightwave Technol 27(11):1540

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Fabrice Canto from CEA-LGCI in Marcoule for kind help in lending us the super-continuum light source (LEUKOS-SM-30-UV). The authors would like to thank the TRAD company near Toulouse, France, for its very valuable assistance and its flexible access to the irradiation facilities.

Funding

This work was supported in part by the French ”National Agency for Research” Project # Projet-ANR-12-RMNP-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhael Myara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dardaillon, R., Lancry, M., Myara, M. et al. Radiation-induced absorption and photobleaching in erbium Al–Ge-codoped optical fiber. J Mater Sci 55, 14326–14335 (2020). https://doi.org/10.1007/s10853-020-05024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05024-4

Navigation