Skip to main content

Advertisement

Log in

Recent achievements in self-healing materials based on ionic liquids: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, self-healing materials have become popular for their repairable properties, which can stabilize the service performance and prolong lifetime. Ionic liquids, one of the most important self-healing agents, have attracted much attention because of their excellent conductive properties, high healing efficiency, and facile healing condition. In this review, the self-healing mechanism based on ionic liquids and the factors that affect their healing efficiency are explored. On the one hand, ionic liquids endow materials with self-healing character due to the presence of secondary bonds including hydrogen bonds, ion–dipole interactions, and ionic aggregation. One the other hand, ionic liquids are combined with other materials and impart self-healing properties due to reversible chemical reactions such as Diels–Alder, coordination, and electrochemical reaction. In addition, the effects on the self-healing function of ionic liquids are reviewed, including their ionic diffusion ability and environmental conditions. Last, challenges regarding self-healing materials concerning ionic liquids are presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Figure reproduced with permission from John Wiley and Sons [6]

Figure 2

Figure reproduced with permission from John Wiley and Sons [6]

Figure 3

Figure reproduced with permission from John Wiley and Sons [83]

Figure 4

Figure reproduced with permission from John Wiley and Sons [29]

Figure 5

Figure reproduced with permission from John Wiley and Sons [85]

Figure 6

Figure reproduced with permission from Elsevier [2]

Figure 7
Figure 8

Figure reproduced with permission from American Chemical Society [91]

Figure 9

Reproduced with permission. Figure reproduced with permission from John Wiley and Sons [59]

Figure 10

Figure reproduced with permission from Elsevier [92]

Figure 11

Figure reproduced with permission from Elsevier [92]

Figure 12

Figure reproduced with permission from John Wiley and Sons [108]

Figure 13

Figure reproduced with permission from John Wiley and Sons [108]

Similar content being viewed by others

References

  1. Qiang Z, Liu L, Pan C, Dong L (2018) Review of recent achievements in self-healing conductive materials and their applications. J Mater Sci Lett 53:27–46

    Google Scholar 

  2. Huang X, Huang Z, Lai J, Li L, Yang G, Li C (2018) Self-healing improves the stability and safety of polymer bonded explosives. Compos Sci Technol 167:346–354

    CAS  Google Scholar 

  3. Syrett JA, Becer RC, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem 1:978–987

    CAS  Google Scholar 

  4. Fee P, Krull FF, Friederike A, Peter S, Peter W, Thomas M (2012) An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations. Adv Mater 24:4306–4310

    Google Scholar 

  5. Yao W, Chen X, Tian Q, Luo C, Zhang X, Peng H, Wu W (2020) Directly printing of upconversion fluorescence-responsive elastomers for self-healable optical application. Chem Eng J 384:123375. https://doi.org/10.1016/j.cej.2019.123375

    Article  CAS  Google Scholar 

  6. Huynh TP, Sonar P, Haick H (2017) Advanced materials for use in soft self-healing devices. Adv Mater 29:1604973. https://doi.org/10.1002/adma.201604973

    Article  CAS  Google Scholar 

  7. Ali E (2017) Ionic liquid devices. Royal Society of Chemistry, London

    Google Scholar 

  8. Park S, Thangavel G, Parida K, Li S, Lee PS (2019) A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv Mater 31:1805536. https://doi.org/10.1002/adma.201805536

    Article  CAS  Google Scholar 

  9. Zhao H, Sun Q, Deng X, Cui J (2018) Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces. Adv Mater 30:1802141. https://doi.org/10.1002/adma.201802141

    Article  CAS  Google Scholar 

  10. Huang CH, Liu YL (2017) Self-healing polymeric materials for membrane separation: an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Adv 7:38360

    CAS  Google Scholar 

  11. Qu J, Meyer HM III, Cai Z-B, Ma C, Luo H (2015) Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms. Wear 332:1273–1285

    Google Scholar 

  12. Qu J, Barnhill WC, Luo H, Meyer HM III, Leonard DN, Landauer AK, Kheireddin B, Gao H et al (2015) Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv Mater 27:4767–4774

    CAS  Google Scholar 

  13. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wiessner S, Stöckelhuber KW, Voit B et al (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    CAS  Google Scholar 

  14. Trivedi TJ, Bhattacharjya D, Yu JS, Kumar A (2015) Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem 8:3294–3303

    CAS  Google Scholar 

  15. Jia H, Tao X, Wang Y (2016) Flexible and self-healing thermoelectric converters based on thermosensitive liquids at low temperature gradient. Adv Electron Mater 2:1600136. https://doi.org/10.1002/aelm.201600136

    Article  CAS  Google Scholar 

  16. Jones CD, Steed JW (2016) Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 45:6546–6596

    CAS  Google Scholar 

  17. Ko J, Kim Y-J, Kim YS (2016) Self-healing polymer dielectric for a high capacitance gate insulator. ACS Appl Mater Interfaces 8:23854–23861

    CAS  Google Scholar 

  18. Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301:725–732

    CAS  Google Scholar 

  19. Vila J, Ginés P, Pico JM, Franjo C, Jiménez E, Varela LM (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib 242:141–146

    CAS  Google Scholar 

  20. Tian B, Yao W, Zeng P, Li X, Wang H, Liu L, Feng Y, Luo C et al (2019) All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J Mater Chem C 7:809–818

    CAS  Google Scholar 

  21. Sharma M, Mondal D, Mukesh C, Prasad K (2013) Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohyd Polym 98:1025–1030

    CAS  Google Scholar 

  22. Oh JY, Kim S, Baik HK, Jeong U (2016) Conducting polymer dough for deformable electronics. Adv Mater 28:4455–4461

    CAS  Google Scholar 

  23. Saurín N, Sanes J, Carrión F, Bermúdez M (2016) Self-healing of abrasion damage on epoxy resin controlled by ionic liquid. RSC Adv 6:37258–37264

    Google Scholar 

  24. Shi S-C, Huang T-F (2017) Self-healing materials for ecotribology. Materials 10:91. https://doi.org/10.3390/ma10010091

    Article  CAS  Google Scholar 

  25. Huang Y, Huang Y, Zhu M, Meng W, Pei Z, Liu C, Hu H, Zhi C (2015) Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9:6242

    CAS  Google Scholar 

  26. Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G (2015) A conductive self-healing hybrid gel enabled by metal–ligand supramolecule and nanostructured conductive polymer. Nano Lett 15:6276–6281

    CAS  Google Scholar 

  27. Hager MD, Zwaag SVD, Schubert US (2017) Self-healing Materials. Springer, Berlin

    Google Scholar 

  28. Eftekhari A, Saito T (2017) Synthesis and properties of polymerized ionic liquids. Eur Polymer J 90:245–272

    CAS  Google Scholar 

  29. Zhang S, Cicoira F (2017) Water-enabled healing of conducting polymer films. Adv Mater 29:1703098. https://doi.org/10.1002/adma.201703098

    Article  CAS  Google Scholar 

  30. Chen S, Zhang B, Zhang N, Ge F, Zhang B, Wang X, Song J (2018) Development of self-healing d-gluconic acetal-based supramolecular ionogels for potential use as smart quasisolid electrochemical materials. ACS Appl Mater Interfaces 10:5871–5879

    CAS  Google Scholar 

  31. Chen T, Kong W, Zhang Z, Wang L, Jin Z (2018) Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54:17–25

    CAS  Google Scholar 

  32. An G, Ma W, Sun Z, Liu Z, Han B, Miao S, Miao Z, Ding K (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801

    CAS  Google Scholar 

  33. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    CAS  Google Scholar 

  34. Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418

    CAS  Google Scholar 

  35. Zwaag S (2008) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht

    Google Scholar 

  36. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621. https://doi.org/10.1038/nmat2448

    Article  CAS  Google Scholar 

  37. Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley, New York

    Google Scholar 

  38. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424. https://doi.org/10.1002/adma.201003036

    Article  CAS  Google Scholar 

  39. Rao Q, Li A, Zhang J, Jiang J, Zhang Q, Zhan X, Chen F (2019) Multi-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairing. J Mater Chem A 7:2172–2183

    CAS  Google Scholar 

  40. Zhang ZP, Rong MZ, Zhang MQ (2018) Mechanically robust, self-healable, and highly stretchable “living” crosslinked polyurethane based on a reversible C–C bond. Adv Func Mater 28:1706050. https://doi.org/10.1002/adfm.201706050

    Article  CAS  Google Scholar 

  41. Yang J, Chen M, Li P, Cheng F, Xu Y, Li Z, Wang Y, Li H (2018) Self-healing hydrogel containing Eu-polyoxometalate as acid-base vapor modulated luminescent switch. Sens Actuators Chem 273:153–158

    CAS  Google Scholar 

  42. Sanes J, Saurín N, Carrión F, Ojados G, Bermudez M (2016) Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites. Compos B Eng 105:149–159

    CAS  Google Scholar 

  43. Borré E, Stumbé JF, Bellemin-Laponnaz S, Mauro M (2016) Light-powered self-healable metallosupramolecular soft actuators. Angew Chem Int Ed 55:1313–1317

    Google Scholar 

  44. Yang M, Zhu X, Ren G, Men X, Guo F, Li P, Zhang Z (2015) Tribological behaviors of polyurethane composite coatings filled with ionic liquid core/silica gel shell microcapsules. Tribol Lett 58:1–9

    CAS  Google Scholar 

  45. Massaro M, Riela S, Cavallaro G, Gruttadauria M, Milioto S, Noto R, Lazzara G (2014) Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415

    CAS  Google Scholar 

  46. Bekas DG, Tsirka K, Baltzis D, Paipetis AS (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos B 87:92–119

    CAS  Google Scholar 

  47. Ahner J, Bode S, Micheel M, Dietzek B, Hager MD (2015) Self-healing functional polymeric materials. In: Hager MD, Zwaag SVD, Schubert US (eds) Self-healing materials. Springer, Berlin

    Google Scholar 

  48. Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10:14–27

    CAS  Google Scholar 

  49. Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4:359–362

    CAS  Google Scholar 

  50. Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos Part A Appl Sci Manuf 34:743–753

    Google Scholar 

  51. Li Y, Rios O, Keum JK, Chen J, Kessler MR (2016) Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl Mater Interfaces 8:15750–15757

    CAS  Google Scholar 

  52. Feldner T, Häring M, Saha S, Esquena J, Banerjee R, Diaz DD (2016) Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem Mater 28:3210–3217

    CAS  Google Scholar 

  53. Chang R, Wang X, Li X, An H, Qin J (2016) Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl Mater Interfaces 8:25544–25551

    CAS  Google Scholar 

  54. Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031

    CAS  Google Scholar 

  55. Saurín N, Sanes J, Bermúdez MD (2015) Self-healing of abrasion damage in epoxy resin-ionic liquid nanocomposites. Tribol Lett 58:1–9

    Google Scholar 

  56. Miyamae K, Nakahata M, Takashima Y, Harada A (2015) Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew Chem Int Ed 54:8984–8987

    CAS  Google Scholar 

  57. Aboudzadeh A, Shaplov AS, Hernandez G, Vygodskii YS, Vlasov PS, Lozinskaya EI, Pozo-Gonzalo G, Forsyth M et al (2015) Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. J Mater Chem A 3:2338–2343

    CAS  Google Scholar 

  58. Aboudzadeh MA, Zhu H, Pozo-Gonzalo C, Shaplov AS, Mecerreyes D, Forsyth M (2015) Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochim Acta 175:74–79

    CAS  Google Scholar 

  59. Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater 27:3331–3335

    CAS  Google Scholar 

  60. Uhl B, Buchner F, Alwast D, Wagner N, Behm RJ (2013) Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM. Beilstein J Nanotechnol 4:903–918

    CAS  Google Scholar 

  61. Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    CAS  Google Scholar 

  62. Amabilino DB, Smith DK, Steed JW (2017) Supramolecular materials. Chem Soc Rev 46:2404–2420

    CAS  Google Scholar 

  63. Whiteley JM, Taynton P, Zhang W, Lee SH (2016) Ultra-thin solid-state li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv Mater 27:6922–6927

    Google Scholar 

  64. Maka H (2014) Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym Lett 8:723–732

    CAS  Google Scholar 

  65. Guo J, Yuan C, Guo M, Wang L, Yan F (2014) Flexible and voltage-switchable polymer velcro constructed using host–guest recognition between poly (ionic liquid) strips. Chem Sci 5:3261–3266

    CAS  Google Scholar 

  66. D’Anna F, Rizzo C, Vitale P, Lazzara G, Noto R (2014) Dicationic organic salts: gelators for ionic liquids. Soft Matter 10:9281–9292

    Google Scholar 

  67. Eftekhari A (2017) Polymerized ionic liquids. Royal Socirty of Chemistry, London

    Google Scholar 

  68. Torimoto T, Tsuda T, Okazaki KI, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221

    CAS  Google Scholar 

  69. Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F (2014) Multistimuli responsive and electroactive supramolecular gels based on ionic liquid gemini guest. ACS Macro Lett 3:271–275

    CAS  Google Scholar 

  70. Voroshylova IV, Chaban VV (2014) Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J Phys Chem B 118:10716–10724

    CAS  Google Scholar 

  71. Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4610

    CAS  Google Scholar 

  72. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    CAS  Google Scholar 

  73. Haoran G, Yanjing G, Shengling J, Materials SF (2018) Photocured materials with self-healing function through ionic interactions for flexible electronics. ACS Appl Mater Interfaces 10:26694–26704

    Google Scholar 

  74. Wu J, Han S, Yang T, Li Z, Wu Z, Gui X, Tao K, Miao J et al (2018) Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl Mater Interfaces 10:19097–19105

    CAS  Google Scholar 

  75. Suckow M, Mordvinkin A, Roy M, Singha NK, Heinrich G, Voit B, Saalwächter K, Böhme F (2018) Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 51:468–479

    CAS  Google Scholar 

  76. Liu Y, Liu Y, Hu H, Liu Z, Pei X, Yu B, Yan P, Zhou F (2015) Mechanically induced self-healing superhydrophobicity. J Phys Chem C 119:7109–7114

    CAS  Google Scholar 

  77. Herrmann S (2015) New synthetic routes to polyoxometalate containing ionic liquids: an investigation of their properties. Springer, Berlin

    Google Scholar 

  78. Yuan J, Mecerreyes D, Antonietti M (2013) Progress in polymer science poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    CAS  Google Scholar 

  79. Landauer AK, Barnhill WC, Qu J (2016) Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations. Wear 354:78–82

    Google Scholar 

  80. Noro A, Matsushita Y, Lodge TP (2009) Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 42:5839–5844

    Google Scholar 

  81. Folmer BJ, Sijbesma R, Versteegen R, Van der Rijt J, Meijer E (2000) Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater 12:874–878

    CAS  Google Scholar 

  82. Zheng J, Xiao P, Liu W, Zhang J, Huang Y, Chen T (2016) Mechanical robust and self-healable supramolecular hydrogel. Macromol Rapid Commun 37:265–270

    Google Scholar 

  83. Long T, Li Y, Fang X, Sun J (2018) Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv Func Mater 28:1804416. https://doi.org/10.1002/adfm.201804416

    Article  CAS  Google Scholar 

  84. Kamio E, Yasui T, Iida Y, Gong JP, Matsuyama H (2017) Inorganic/organic double-network gels containing ionic liquids. Adv Mater 29:1704118. https://doi.org/10.1002/adma.201704118

    Article  CAS  Google Scholar 

  85. Cao Y, Morrissey TG, Acome E, Allec SI, Wong BM, Keplinger C, Wang C (2017) A transparent, self-healing, highly stretchable ionic conductor. Adv Mater 29:1605099. https://doi.org/10.1002/adma.201605099

    Article  CAS  Google Scholar 

  86. Wang H, Wang Z, Yang J, Xu C, Zhang Q, Peng Z (2018) Ionic gels and their applications in stretchable electronics. Macromol Rapid Commun 39:1800246. https://doi.org/10.1002/marc.201800246

    Article  CAS  Google Scholar 

  87. Li X, Zhang H, Zhang P, Yu Y (2018) A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices. Chem Mater 30:3752–3758

    CAS  Google Scholar 

  88. Jia H, He Y, Zhang X, Du W, Wang Y (2015) Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Electron Mater 1:1500029. https://doi.org/10.1002/aelm.201500029

    Article  CAS  Google Scholar 

  89. Yang Y, Urban MW (2018) Self-healing of polymers via supramolecular chemistry. Adv Mater Interfaces 5:1800384. https://doi.org/10.1002/admi.201800384

    Article  CAS  Google Scholar 

  90. Jing C, Nie F, Yang J, Li P, Zhe M, Li Y (2017) Novel imidazolium-based poly(ionic liquid)s with different counter ions for self-healing. J Mater Chem A 5:25220–25229

    Google Scholar 

  91. He X, Zhang C, Wang M, Zhang Y, Liu L, Yang W (2017) An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties. ACS Appl Mater Interfaces 9:11134–11143

    CAS  Google Scholar 

  92. Sharma A, Rawat K, Solanki PR, Bohidar H (2017) Self-healing gelatin ionogels. Int J Biol Macromol 95:603–607

    CAS  Google Scholar 

  93. Zhou X, Ouyang C (2017) Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings. Surf Coat Technol 315:67–79

    CAS  Google Scholar 

  94. Eisenberg A (1970) Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3:147–154

    CAS  Google Scholar 

  95. Cuthbert TJ, Jadischke JJ, de Bruyn JR, Ragogna PJ, Gillies ER (2017) Self-healing polyphosphonium ionic networks. Macromolecules 50:5253–5260

    CAS  Google Scholar 

  96. Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ionics 314:119–128

    CAS  Google Scholar 

  97. Cheng Y, Zhang L, Xu S, Zhang H, Ren B, Li T, Zhang S (2018) Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. J Mater Chem A 6:18479–18487

    CAS  Google Scholar 

  98. Liu Y-J, Cao W-T, Ma M-G, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces 9:25559–25570

    CAS  Google Scholar 

  99. Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336

    CAS  Google Scholar 

  100. Zhang B, Sudre G, Quintard G, Serghei A, Charlot A (2016) Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohyd Polym 157:586–595

    Google Scholar 

  101. Lodge TP, Ueki T (2016) Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res 49:2107–2114

    CAS  Google Scholar 

  102. Shi Y, Ha H, Al-Sudani A, Ellison CJ, Yu G (2016) Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices. Adv Mater 28:7921–7928

    CAS  Google Scholar 

  103. Ueki T, Usui R, Kitazawa Y, Lodge TP, Watanabe M (2015) Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules 48:5928–5933

    CAS  Google Scholar 

  104. Pu W, Fu D, Wang Z, Gan X, Lu X, Yang L, Xia H (2018) Realizing crack diagnosing and self-healing by electricity with a dynamic crosslinked flexible polyurethane composite. Adv Sci 5:1800101. https://doi.org/10.1002/admi.201800384

    Article  CAS  Google Scholar 

  105. Sun H-J, Zhang S, Percec V (2015) From structure to function via complex supramolecular dendrimer systems. Chem Soc Rev 44:3900–3923

    CAS  Google Scholar 

  106. Li X, Liu L, Wang X, Zhu Y, Wang B (2017) Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes. Sci Rep 7:1685. https://doi.org/10.1038/s41598-017-01873-3

    Article  CAS  Google Scholar 

  107. Li H, Cui Y, Wang H, Yan W, Tu J (2017) Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf A 518:181–187

    CAS  Google Scholar 

  108. Zhang J, Gu C, Tong Y, Yan W, Tu J (2016) A smart superhydrophobic coating on AZ31B magnesium alloy with self-healing effect. Adv Mater Interfaces 3:1500694. https://doi.org/10.1002/admi.201500694

    Article  CAS  Google Scholar 

  109. Yin MJ, Yao M, Gao S, Zhang AP, Tam HY, Wai PKA (2016) Rapid 3D patterning of poly (acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater 28:1394–1399

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supported from the Key Projects of Hunan Provincial Department of Education (19A132), the Natural Science foundation of Hunan Province (2020JJ6070, 2019JJ60057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Jiang, H., Chang, Z. et al. Recent achievements in self-healing materials based on ionic liquids: a review. J Mater Sci 55, 13543–13558 (2020). https://doi.org/10.1007/s10853-020-04981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04981-0

Navigation