Skip to main content
Log in

Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One kind of gel polymer electrolytes (GPE) with high performances based on polyacrylonitrile and green natural lignocellulose (LC) has been prepared. This as-prepared GPE exhibits excellent performance. When the proportion of LC reaches up to 60 wt%, the prepared composite membrane has a liquid electrolyte uptake of 673 wt% at room temperature, and the corresponding GPE-60 presents an ultrahigh lithium ion transference number of 0.84, high electrochemical stability and excellent specific capacity (143.90 mAh g−1 at 0.2 C at 90th cycle of LiFePO4||GPE-60||Li). These advantages prove that the GPE-60 has great potential for the application of lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wu FX, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 10:435–459

    Article  CAS  Google Scholar 

  2. Xu W, Wang JL, Ding F et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  3. Lu YY, Tu ZY, Archer LA (2014) Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 13:961–969

    Article  CAS  Google Scholar 

  4. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5:63–69

    Article  CAS  Google Scholar 

  5. Fan L, Wei SY, Li SY, Li Q, Lu YY (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8:1702657

    Article  CAS  Google Scholar 

  6. Cheng XL, Pan J, Zhao Y, Liao M, Peng HS (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184

    Article  CAS  Google Scholar 

  7. Li X, Wang ZJ, Lin H, Liu YD, Min Y, Pan F (2019) Composite electrolytes of pyrrolidone-derivatives-PEO enable to enhance performance of all solid state lithium–ion batteries. Electrochim Acta 293:25–29

    Article  CAS  Google Scholar 

  8. Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79

    Article  CAS  Google Scholar 

  9. Lightfoot P, Mehta MA, Bruce PG (1993) Crystal structure of the polymer electrolyte poly(ethylene oxide)3:LiCF3SO3. Science 262:883–885

    Article  CAS  Google Scholar 

  10. Yang LY, Wei DX, Xu M, Yao YF, Chen Q (2014) Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design. Angew Chem Int Ed 53:3631–3635

    Article  CAS  Google Scholar 

  11. Ulrich R, Zwanziger JW, De Paul SM et al (2002) Solid hybrid polymer electrolyte networks: nano-structurable materials for lithium batteries. Adv Mater 14:1134–1137

    Article  CAS  Google Scholar 

  12. Bhattacharyya AJ, Fleig J, Guo Y-G, Maier J (2005) Local conductivity effects in polymer electrolytes. Adv Mater 17:2630–2634

    Article  CAS  Google Scholar 

  13. Li D, Chen L, Wang TS, Fan LZ (2018) 3D Fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces 10:7069–7078

    Article  CAS  Google Scholar 

  14. Park SR, Jung YC, Shin WK, Ahn KH, Lee CH, Kim DW (2017) Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety. J Membr Sci 527:129–136

    Article  CAS  Google Scholar 

  15. Sim LN, Sentanin FC, Pawlicka A, Yahya R, Arof AK (2017) Development of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide for application in electrochromic device. Electrochim Acta 229:22–30

    Article  CAS  Google Scholar 

  16. Huang B, Wang Z, Li G et al (1996) Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 85:79–84

    Article  CAS  Google Scholar 

  17. Zhao L, Huang Y, Liu B et al (2018) Gel polymer electrolyte based on polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method. Electrochim Acta 278:1–12

    Article  CAS  Google Scholar 

  18. Kim H-S, Shin J-H, Moon S-I, Kim S-P (2003) Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim Acta 48:1573–1578

    Article  CAS  Google Scholar 

  19. Boudin F, Andrieu X, Jehoulet C, Olsen II (1999) Microporous PVdF gel for lithium-ion batteries. J Power Sources 81–82:804–807

    Article  Google Scholar 

  20. Lu QW, He YB, Yu QP et al (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29:1604460

    Article  CAS  Google Scholar 

  21. Akashi H, Sekai K, Tanaka K-i (1998) A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochim Acta 43:1193–1197

    Article  CAS  Google Scholar 

  22. Wang SH, Kuo PL, Hsieh CT, Teng HS (2014) Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS Appl Mater Interfaces 6:19360–19370

    Article  CAS  Google Scholar 

  23. Liu B, Huang Y, Cao HJ et al (2018) A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149

    Article  CAS  Google Scholar 

  24. Li BL, Huang Y, Cheng P et al (2019) Upgrading comprehensive performances of gel polymer electrolyte based on polyacrylonitrile via copolymerizing acrylonitrile with N-vinylpryrrolidone. Electrochim Acta 320:134572

    Article  CAS  Google Scholar 

  25. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  26. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  27. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    Article  CAS  Google Scholar 

  28. Song AM, Huang Y, Liu B et al (2017) Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochim Acta 247:505–515

    Article  CAS  Google Scholar 

  29. Song AM, Huang Y, Zhong XP et al (2017) Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim Acta 245:981–992

    Article  CAS  Google Scholar 

  30. Wang S, Zhang L, Wang AL et al (2018) Polymer-laden composite lignin-based electrolyte membrane for high-performance lithium batteries. ACS Sustainable Chem Eng 6:14460–14469

    Article  CAS  Google Scholar 

  31. Du Z, Su YZ, Qu YY et al (2019) A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim Acta 299:19–26

    Article  CAS  Google Scholar 

  32. Zhu YS, Xiao SY, Shi Y, Yang YQ, Hou YY, Wu YP (2014) A composite gel polymer electrolyte with high performance based on poly(vinylidene fluoride) and polyborate for lithium ion batteries. Adv Energy Mater 4:1300647

    Article  CAS  Google Scholar 

  33. Zhu YS, Xiao SY, Shi Y, Yang YQ, Wu YP (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797

    Article  CAS  Google Scholar 

  34. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  35. Bruce PG, Vincent CA (1987) Steady state current flow in solid binary electrolyte cells. J Electroanal Chem Interfacial Electrochem 225:1–17

    Article  CAS  Google Scholar 

  36. Bruce PG, Hardgrave MT, Vincent CA (1989) Steady state current flow in solid binary electrolyte cells: part 2. The effect of ion association. J Electroanal Chem Interfacial Electrochem 271:27–34

    Article  CAS  Google Scholar 

  37. Reiche A, Tübke J, Sandner R, Werther A, Sandner B, Fleischer G (1998) Cationic transport in gel electrolytes on basis of oligo(ethylene glycol) dimethacrylate. Electrochim Acta 43:1429–1434

    Article  CAS  Google Scholar 

  38. Gopalan AI, Santhosh P, Manesh KM et al (2008) Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  39. Huang YX, Huang Y, Liu B et al (2018) Gel polymer electrolyte based on p(acrylonitrile-maleic anhydride) for lithium ion battery. Electrochim Acta 286:242–251

    Article  CAS  Google Scholar 

  40. Liu B, Huang Y, Zhao L et al (2018) A novel non-woven fabric supported gel polymer electrolyte based on poly (methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries. J Membr Sci 564:62–72

    Article  CAS  Google Scholar 

  41. Deng XH, Huang Y, Song AM et al (2019) Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. Mater Chem Phys 229:232–241

    Article  CAS  Google Scholar 

  42. Zhong Y, Zhong L, Wang S et al (2019) Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries. J Mater Chem A 7:24251–24261

    Article  CAS  Google Scholar 

  43. Tian Z, He X, Pu W, Wan C, Jiang C (2006) Preparation of poly(acrylonitrile–butyl acrylate) gel electrolyte for lithium–ion batteries. Electrochim Acta 52:688–693

    Article  CAS  Google Scholar 

  44. Tian Z, Pu W, He X, Wan C, Jiang C (2007) Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochim Acta 52:3199–3206

    Article  CAS  Google Scholar 

  45. Lu QW, Yang J, Lu W, Wang JL, Nuli Y (2015) Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochim Acta 152:489–495

    Article  CAS  Google Scholar 

  46. Zhao JH, Zhang JJ, Hu P et al (2016) A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta 188:23–30

    Article  CAS  Google Scholar 

  47. Gong SD, Huang Y, Cao HJ et al (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sour 307:624–633

    Article  CAS  Google Scholar 

  48. Aihara Y, Arai S, Hayamizu K (2000) Ionic conductivity, DSC and self diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions. Electrochim Acta 45:1321–1326

    Article  CAS  Google Scholar 

  49. Shim J, Kim HJ, Kim BG, Kim YS, Kim DG, Lee JC (2017) 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ Sci 10:1911–1916

    Article  CAS  Google Scholar 

  50. Li MX, Wang XW, Wang YF, Chen BW, Wu YP, Holze R (2015) A gel polymer electrolyte based on composite of nonwoven fabric and methyl cellulose with good performance for lithium ion batteries. RSC Adv 5:52382–52387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Fund for the Oil and Gas Materials Key Laboratory of Higher Education of Sichuan Province (X151518KCL14), Chinese Undergraduate Training Programs for Innovation and Entrepreneurship (201810615049), the Key Project of Extracurricular Open Fund of Southwest Petroleum University (KSZ18521).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Huang or Haijun Cao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Huang, Y., Xu, X. et al. Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery. J Mater Sci 55, 12249–12263 (2020). https://doi.org/10.1007/s10853-020-04888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04888-w

Navigation