Skip to main content

Advertisement

Log in

Design and synthesis of dendritic Co3O4@Co2(CO3)(OH)2 nanoarrays on carbon cloth for high-performance supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt carbonate hydroxide possesses interesting capacitive properties due to the unique crystal structure. Herein, the hierarchical Co3O4@Co2(CO3)(OH)2 dendritic structure was fabricated on carbon cloth with Co3O4 nanoneedles as the inner core to enhance the conductivity. The loading efficiency of Co2(CO3)(OH)2 nanowhiskers had improved obviously, and the nanowires provided more electrochemical sites to facilitate the superior electrochemical energy storage capacity of supercapacitor. The dendritic electrode with the core–shell structure had a high area-specific capacitance (1541 mF cm−2 at 1 mA cm−2), good rate capacitance (only 18.1% specific capacitance lost when the current density increased to 5 mA cm−2), as well as better electrochemical cycle stability (a capacitance retention of 72.1% after 5000 cycles at a high current density of 5 mA cm−2). The dendritic Co3O4@Co2(CO3)(OH)2 and activated carbon as cathode and anode, respectively, were used to assemble an asymmetric supercapacitor, possessing the better area-specific capacitance of 87 mF cm−2 as well as well-deserved longevity retaining approximately 97.3% of initial capacitance even after 10,000 cycles at 1 mA cm−2. The excellent properties stemmed from electro-active sites galore, strong adhesion between the core and shell, superior conductivity, as well as excellent ion transfer. The novel materials and feasible strategy are promising for next-generation hybrid supercapacitor with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Islam MM, Subramaniyam CM, Akhter T, Faisal SN, Minett AI, Liu H, Konstantionov K, Dou S (2017) Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. J Mater Chem A 5:5290–5302

    Article  CAS  Google Scholar 

  2. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  3. Yang J, Yuan Y, Wang W, Tang H, Ye Z, Lu J (2017) Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors. J Power Sources 340:6–13

    Article  CAS  Google Scholar 

  4. Rafai S, Qiao C, Naveed M, Wang Z, Younas W, Khalid S, Cao C (2019) Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem Eng J 362:576–587

    Article  CAS  Google Scholar 

  5. Huang Z, Sun F, Batmunkh M, Li W, Li H, Sun Y, Zhao Q, Liu X, Ma T (2019) Zinc–nickel–cobalt ternary hydroxide nanoarrays for high performance supercapacitors. J Mater Chem A 7:11826–11835

    Article  CAS  Google Scholar 

  6. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou X (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  7. Tian M, Wu J, Li R, Chen Y, Long D (2019) Fabricating a high-energy-density supercapacitor with asymmetric aqueous redox additive electrolytes and free-standing activated-carbon-felt electrodes. Chem Eng J 363:183–191

    Article  CAS  Google Scholar 

  8. Zhang F, Ma J, Yao H (2019) Ultrathin Ni-MOF nanosheet coated NiCo2O4 nanowire arrays as a high-performance binder-free electrode for flexible hybrid supercapacitors. Ceram Int 45:24279–24287

    Article  CAS  Google Scholar 

  9. Yin Q, He L, Lian J, Sun J, Xiao S, Luo J, Lin B (2019) The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon 155:147–154

    Article  CAS  Google Scholar 

  10. Yang C, Pan Q, Jia Q, Xin Y, Qi W, Wei H, Cao B (2020) Multifunctional microporous activated carbon nanotubes anchored on graphite fibers for high-strength and high-rate flexible all-solid-state supercapacitors. Appl Surf Sci 502:144423–144431

    Article  Google Scholar 

  11. Zhang G, Lou X (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979

    Article  CAS  Google Scholar 

  12. Ning J, Zhang T, He Y, Jia C, Saha P, Cheng Q (2017) Co3O4@CoS core-shell nanosheets on carbon cloth for high performance supercapacitor electrodes. Materials 10:608–620

    Article  Google Scholar 

  13. Jia Y, Ma Y, Zhu L, Dong J, Lin Y (2019) Hierarchical NiCo2O4/Bi2MoO6 heterostructured nanorod arrays for high-performance supercapacitors. Mater Lett 244:130–133

    Article  CAS  Google Scholar 

  14. Chen Y, Pang W, Bai H, Zhou T, Liu Y, Li S, Guo Z (2017) Enhanced structural stability of nickel–cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett 17:429–436

    Article  CAS  Google Scholar 

  15. Masikhwa T, Dangbegnon J, Bello A, Madito M, Momodu D, Manyala N (2016) Preparation and electrochemical investigation of the cobalt hydroxide carbonate/activated carbon nanocomposite for supercapacitor applications. J Phys Chem Solids 88:60–84

    Article  CAS  Google Scholar 

  16. Leng X, Wu L, Liu Y, Li C, Wei S, Jiang Z, Wang GY, Lian J, Jiang Q (2016) A novel open architecture built by ultra-fine single-crystal Co2(CO3)(OH)2 nanowires and reduced graphene oxide for asymmetric supercapacitor. J Mater Chem A 4:17171–17179

    Article  CAS  Google Scholar 

  17. Wang S, Qian L, Xu H, Lu G, Dong W, Tang W (2009) Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. J Alloys Compd 476:739–743

    Article  CAS  Google Scholar 

  18. Shen P, Wang Z, Yang C, Zhao L, Liu T, Shen M, Li J, Qian D (2018) Enhanced electrochemical property of graphite felt@Co2(OH)2CO3 via Ni–P electrodeposition for flexible supercapacitors. Electrochim Acta 283:1568–1577

    Article  CAS  Google Scholar 

  19. Zhu S, Wang Z, Huang F, Zhang H, Li S (2017) Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J Mater Chem A 5:9960–9969

    Article  CAS  Google Scholar 

  20. Wang Y, Chen Y, Liu Y, Liu W, Zhao P, Li Y, Dong Y, Wang H, Yang J (2019) Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes. Electrochim Acta 295:989–996

    Article  CAS  Google Scholar 

  21. Liu H, Guo Z, Xun X, Lian J (2019) Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors. J Mater Sci Mater Electron 30:11952–11963

    Article  CAS  Google Scholar 

  22. Yuan Y, Chen R, Zhang H, Liu Q, Liu J, Yu J, Wang C, Sun Z, Wang J (2018) Hierarchical NiSe@Co2(CO3)(OH)2 heterogeneous nanowire arrays on nickel foam as electrode with high areal capacitance for hybrid supercapacitors. Electrochim Acta 294:325–336

    Article  Google Scholar 

  23. Masikhwa TM, Dangbegnon JK, Bello A, Madito MJ, Momodu D, Barzegar F, Manyala N (2016) Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. J Phys Chem Solids 94:17–24

    Article  CAS  Google Scholar 

  24. Sankar KV, Seo Y, Lee S, Liu S, Kundu A, Ray C, Jun SC (2018) Cobalt carbonate hydroxides as advanced battery-type materials for supercapatteries: influence of morphology on performance. Electrochim Acta 259:1037–1044

    Article  CAS  Google Scholar 

  25. Wu D, Xu S, Li M, Zhang C, Zhu Y, Xu Y, Zhang W, Huang R, Qi R, Wang L, Chu PK (2015) Hybrid MnO2/C nano-composites on a macroporous electrically conductive network for supercapacitor electrodes. J Mater Chem A 3:16695–16707

    Article  CAS  Google Scholar 

  26. Quan W, Xu Y, Wang Y, Meng S, Jiang D, Chen M (2019) Hierarchically structured Co3O4@glucose-modified LDH architectures for high-performance supercapacitors. Appl Surf Sci 488:639–647

    Article  CAS  Google Scholar 

  27. Guo Y, Hong X, Wang Y, Li Q, Meng J, Dai R, Liu X, He L, Mai L (2019) Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv Funct Mater 29:1809004–1809014

    Article  Google Scholar 

  28. Zong Q, Yang H, Wang Q, Zhang Q, Zhu Y, Wang H, Shen Q (2019) Three-dimensional Coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem Eng J 361:1–11

    Article  CAS  Google Scholar 

  29. Wang H, Qing C, Guo J, Aref AA, Sun D, Wang B, Tang Y (2014) Highly conductive carbon-CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J Mater Chem A 2:11776–11783

    Article  CAS  Google Scholar 

  30. Cheng M, Duan S, Fan H, Su X, Cui Y, Wang R (2017) Core@shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem Eng J 327:100–108

    Article  CAS  Google Scholar 

  31. Zhao S, Wei S, Liu R, Wang Y, Yu Y, Shen Q (2015) Cobalt carbonate dumbbells for high-capacity lithium storage: a slight doping of ascorbic acid and an enhancement in electrochemical performances. J Power Sources 284:154–161

    Article  CAS  Google Scholar 

  32. Liu S, Hui KS, Hui KN, Jadhav VV, Xia QX, Yun JM, Cho YR, Mane RS, Kim KH (2016) Facile synthesis of microsphere copper cobalt carbonate hydroxides electrode for asymmetric supercapacitor. Electrochim Acta 188:898–908

    Article  CAS  Google Scholar 

  33. Zhang G, Qin P, Nasser R, Li S, Chen P, Song J (2020) Synthesis of Co(CO3)0.5(OH)/Ni2(CO3)(OH)2 nanobelts and their application in flexible all-solid-state asymmetric supercapacitor. Chem Eng J 387:124029

    Article  CAS  Google Scholar 

  34. Zhang G, Qin P, Song J (2019) Facile fabrication of Al2O3-doped Co3O4/graphene nanocomposites for high performance asymmetric supercapacitors. Appl Surf Sci 493:55–62

    Article  CAS  Google Scholar 

  35. Wang X, Xia H, Wang X, Gao J, Shi B, Fang Y (2016) Facile synthesis ultrathin mesoporous Co3O4 nanosheets for high-energy asymmetric supercapacitor. J Alloys Compd 686:969–975

    Article  CAS  Google Scholar 

  36. Qorbani M, Naseri N, Moshfegh AZ (2015) Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl Mater Interfaces 7:11172–11179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 11705015), Science and Technology Plan Project of Suzhou (Grant No. SYG201738), National Science Foundation of Jiangsu Educational Department (Grant No. 15KJA430001), Scientific research Foundation of University (Grant No. XZ1628), and City University of Hong Kong Strategic Research Grant (SRG) No. 7005015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dajun Wu or Bin Qian.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, P., Tao, S., Gao, X. et al. Design and synthesis of dendritic Co3O4@Co2(CO3)(OH)2 nanoarrays on carbon cloth for high-performance supercapacitors. J Mater Sci 55, 12091–12102 (2020). https://doi.org/10.1007/s10853-020-04819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04819-9

Navigation