Skip to main content

Advertisement

Log in

MoO3 nanoplates: a high-capacity and long-life anode material for sodium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MoO3 has become a very promising energy storage material owing to its high theoretical capacity and layered structure. However, MoO3 suffers from low specific capacitance and fast degradation performance due to pulverization caused by volume change during discharge and charge process. Here, we report the MoO3 nanoplates (MoO3 NPs) from Mo-based metal–organic frameworks (Mo-MOFs) via a facile heating treatment. When used as an anode in sodium-ion batteries (SIBs), the material showed 154 mAh g−1 superior discharge capacity at 50 mA g−1 after 1200 cycles. Even at 500 mA g−1, it also showed 217 mAh g−1 high specific capacity after 500 cycles. This specific MoO3 material design strategy offers suitable conditions for relieving the volume expansion and provides multiple channels for Na+ transport and electron transfer in MoO3 during discharge and charge process. This work highlights the importance of MoO3 nanoplates in preventing the pulverization caused by volume expansion in SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2:510

    Article  CAS  Google Scholar 

  2. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  3. Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1–8

    Google Scholar 

  4. Liu H, Jia M, Zhu Q, Cao B, Chen R, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878–26885

    Article  CAS  Google Scholar 

  5. Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884

    Article  CAS  Google Scholar 

  6. Wang B, Wang G, Cheng X, Wang H (2016) Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem Eng J 306:1193–1202

    Article  CAS  Google Scholar 

  7. Wang Y, Deng Q, Xue W, Jian Z, Zhao R, Wang J (2018) ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries. J Mater Sci 53:6785–6795. https://doi.org/10.1007/s10853-018-2003-3

    Article  CAS  Google Scholar 

  8. Sreedhara MB, Santhosha AL, Bhattacharyya AJ, Rao CNR (2016) Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries. J Mater Chem A 4:9466–9471

    Article  CAS  Google Scholar 

  9. Riley LA, Lee SH, Gedvilias L, Dillon AC (2010) Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J Power Sources 195:588–592

    Article  CAS  Google Scholar 

  10. Xia W, Xu F, Zhu C, Xin HL, Xu Q, Sun P, Sun L (2016) Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy. Nano Energy 27:447–456

    Article  CAS  Google Scholar 

  11. Spahr ME, Novak P, Haas O, Nesper R (1995) Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(Vi) oxide. J Power Sources 54:346–351

    Article  CAS  Google Scholar 

  12. McDowell MT, Xia SM, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480–494

    Article  Google Scholar 

  13. Wu K, Zhan J, Xu G, Zhang C, Pan D, Wu M (2018) MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries. Nanoscale 10:16040–16049

    Article  CAS  Google Scholar 

  14. Ding J, Abbas SA, Hanmandlu C, Lin L, Lai C, Wang P, Li L, Chu C, Chang C (2017) Facile synthesis of carbon/MoO3 nanocomposites as stable battery anodes. J Power Sources 348:270–280

    Article  CAS  Google Scholar 

  15. Zhang X, Fu C, Li J, Yao C, Lu T, Pan L (2017) MoO3/reduced graphene oxide composites as anode material for sodium ion batteries. Ceram Int 43:3769–3773

    Article  CAS  Google Scholar 

  16. Yang C, Lu H, Li C, Wang L, Wang H (2018) Spatially-confined electrochemical reactions of MoO3 nanobelts for reversible high capacity: critical roles of glucose. Chem Eng J 337:1–9

    Article  CAS  Google Scholar 

  17. Wang Z, Madhavi S, Lou XW (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513

    Article  CAS  Google Scholar 

  18. Xia Q, Zhao H, Du Z, Zeng Z, Gao C, Zhang Z, Du X, Kulka A, Świerczek K (2015) Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim Acta 180:947–956

    Article  CAS  Google Scholar 

  19. Lee S-H, Kim Y-H, Deshpande R, Parilla PA, Whitney E, Gillaspie DT, Jones KM, Mahan AH, Zhang S, Dillon AC (2008) Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv Mater 20:3627–3632

    Article  CAS  Google Scholar 

  20. Jiang Y, Sun M, Ni J, Li L (2019) Ultrastable sodium storage in MoO3 nanotube arrays enabled by surface phosphorylation. ACS Appl Mater Interfaces 11:37761–37767

    Article  CAS  Google Scholar 

  21. Meduri P, Clark E, Kim JH, Dayalan E, Sumanasekera GU, Sunkara M (2012) MoO3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett 12:1784–1788

    Article  CAS  Google Scholar 

  22. Cao D, Dai Y, Xie S, Wang H, Niu C (2018) Pyrolytic synthesis of MoO3 nanoplates within foam-like carbon nanoflakes for enhanced lithium ion storage. J Colloid Interface Sci 514:686–693

    Article  CAS  Google Scholar 

  23. Chen J, Lou X (2012) SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater Today 15:246–254

    Article  CAS  Google Scholar 

  24. Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695–4701

    Article  CAS  Google Scholar 

  25. Martin-Zarza P, Arrieta J, MuAoz-Roca M, Gili P (1993) Synthesis and characterization of new octamolybdates containing imidazole, 1-methyl- or 2-methyl-imidazole co-ordinatively bound to molybdenum. J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9930001551

    Article  Google Scholar 

  26. Lou X, Zeng H (2002) Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem Mater 14:4781–4789

    Article  CAS  Google Scholar 

  27. Li S, Hou H, Huang Z, Liao H, Qiu X, Ji X (2017) Alternating voltage introduced [001]-oriented α-MoO3 microrods for high-performance sodium-ion batteries. Electrochim Acta 245:949–956

    Article  CAS  Google Scholar 

  28. Cai Y, Yang H, Zhou J, Luo Z, Fang G, Liu S, Pan A, Liang S (2017) Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-ion batteries. Chem Eng J 327:522–529

    Article  CAS  Google Scholar 

  29. Qiu J, Yang Z, Li Y (2015) N-doped carbon encapsulated ultrathin MoO3 nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion batteries. J Mater Chem A 3:24245–24253

    Article  CAS  Google Scholar 

  30. Ji H, Liu X, Liu Z, Yan B, Chen L, Xie Y, Liu C, Hou W, Yang G (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894

    Article  CAS  Google Scholar 

  31. Ma F, Yuan A, Xu J, Hu P (2015) Porous alpha-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. ACS Appl Mater Interfaces 7:15531–15541

    Article  CAS  Google Scholar 

  32. Hariharan S, Saravanan K, Balaya P (2013) α-MoO3: a high performance anode material for sodium-ion batteries. Electrochem Commun 31:5–9

    Article  CAS  Google Scholar 

  33. Liu Y, Zhang B, Xiao S, Liu L, Wen Z, Wu Y (2014) A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim Acta 116:512–517

    Article  CAS  Google Scholar 

  34. Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 56:3981–3987

    Article  CAS  Google Scholar 

  35. Xu Y, Zhou M, Wang X, Wang C, Liang L, Grote F, Wu M, Mi Y, Lei Y (2015) Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew Chem Int Ed Engl 54:8768–8771

    Article  CAS  Google Scholar 

  36. Li Y, Wang D, An Q, Ren B, Rong Y, Yao Y (2016) Flexible electrode for long-life rechargeable sodium-ion batteries: effect of oxygen vacancy in MoO3−x. J Mater Chem A 4:5402–5405

    Article  CAS  Google Scholar 

  37. Liu T-C, Pell WG, Conway BE, Roberson SL (1998) Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J Electrochem Soc 145:1882–1888

    Article  CAS  Google Scholar 

  38. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  39. Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122

    Article  CAS  Google Scholar 

  40. Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116

    Article  CAS  Google Scholar 

  41. Zhao Y, Ding C, Hao Y, Zhai X, Wang C, Li Y, Li J, Jin H (2018) Neat design for the structure of electrode to optimize the lithium-ion battery performance. ACS Appl Mater Interfaces 10:27106–27115

    Article  CAS  Google Scholar 

  42. Yan P, Zheng J, Gu M, Xiao J, Zhang J, Wang C (2017) Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun 8:14101

    Article  CAS  Google Scholar 

  43. Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater 16:454–460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 41572034) and the Guangxi Natural Science Foundation (No. 2018GXNSFAA294012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Wang or Linjiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xiang, Q., Li, X. et al. MoO3 nanoplates: a high-capacity and long-life anode material for sodium-ion batteries. J Mater Sci 55, 12053–12064 (2020). https://doi.org/10.1007/s10853-020-04788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04788-z

Navigation